Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884605

RESUMEN

Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper fruit ripening and after exposure to NO enriched atmosphere, a broad analysis has allowed to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was downregulated by 50% in ripe fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by peroxynitrite, occurring near the catalase active center. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of fruits, with activity significantly downregulated in ripe fruits. Nitration plays a key role in this downregulation, favoring an increase in H2O2 during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is downregulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.

2.
Methods Mol Biol ; 2798: 1-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587732

RESUMEN

Total antioxidant capacity (TAC) is a reliable indicator of antioxidant content in animal and plant samples. The different experimental approaches available allow the determination of TAC using, as a reference, diverse compounds with recognized antioxidant capacities such as Trolox, ascorbic acid, gallic acid, or melatonin. A new portable device, named BRS (BQC redox system), is now commercially available that, through an electrochemical approach, allows the determination of TAC in a simple, fast, reproducible, and robust way. In this chapter, using this portable device, a comparative analysis of the TAC is assayed in different red, citrus, and Solanaceae fruits, several Allium species, and organs of different plant species, including Arabidopsis thaliana. The obtained results demonstrate the versatility of the BRS portable device.


Asunto(s)
Arabidopsis , Melatonina , Animales , Antioxidantes , Ácido Ascórbico , Ácido Gálico , Verduras
3.
Methods Mol Biol ; 2798: 223-234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587747

RESUMEN

At the cellular level, the generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), due to different abiotic or biotic stress, causes oxidative stress that induces an imbalance in the metabolism. Among the different H2O2-scavenging enzymatic antioxidants, ascorbate peroxidase (APX) is a heme-peroxidase that plays an important role in the ascorbate-glutathione pathway using ascorbate to reduce H2O2 to water. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with a spectrophotometric assay for APX activity, the protocol allows identifying diverse APX isozymes present in different organs and plant species.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Ascorbato Peroxidasas , Electroforesis en Gel de Poliacrilamida Nativa , Ácido Ascórbico
4.
Methods Mol Biol ; 2798: 213-221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587746

RESUMEN

Catalase, a pivotal enzyme in plant antioxidative defense mechanisms, plays a crucial role in detoxifying hydrogen peroxide, a reactive oxygen species (ROS). In this chapter, a comparative analysis of catalase activity was conducted using two distinct methodologies: spectrophotometry and non-denaturing polyacrylamide gel electrophoresis (PAGE). The spectrophotometric approach allowed the quantification of catalase activity by measuring the breakdown rate of hydrogen peroxide, while native PAGE enabled the separation and visualization of catalase isozymes, based on their native molecular weight and charge characteristics, and specific staining assay. Both methods provide valuable insights into catalase activity, offering complementary information on the enzyme's functional diversity and distribution within different plant tissues. This study integrates different techniques, previously described, to comprehensively elucidate the role of catalase in plant metabolism. Furthermore, it provides the possibility of obtaining a holistic understanding of antioxidant defense mechanisms by considering both total activity and isoenzyme distribution of catalase enzyme.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Catalasa , Electroforesis en Gel de Poliacrilamida Nativa , Espectrofotometría
6.
Antioxidants (Basel) ; 12(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37507999

RESUMEN

Cancer is considered one of the main causes of human death worldwide, being characterized by an alteration of the oxidative metabolism. Many natural compounds from plant origin with anti-tumor attributes have been described. Among them, capsaicin, which is the molecule responsible for the pungency in hot pepper fruits, has been reported to show antioxidant, anti-inflammatory, and analgesic activities, as well as anti-proliferative properties against cancer. Thus, in this work, the potential anti-proliferative activity of pepper (Capsicum annuum L.) fruits from diverse varieties with different capsaicin contents (California < Piquillo < Padrón < Alegría riojana) against several tumor cell lines (lung, melanoma, hepatoma, colon, breast, pancreas, and prostate) has been investigated. The results showed that the capsaicin content in pepper fruits did not correspond with their anti-proliferative activity against tumor cell lines. By contrast, the greatest activity was promoted by the pepper tissues which contained the lowest capsaicin amount. This indicates that other compounds different from capsaicin have this anti-tumor potentiality in pepper fruits. Based on this, green fruits from the Alegría riojana variety, which has negligible capsaicin levels, was used to study the effect on the oxidative and redox metabolism of tumor cell lines from liver (Hep-G2) and pancreas (MIA PaCa-2). Different parameters from both lines treated with crude pepper fruit extracts were determined including protein nitration and protein S-nitrosation (two post-translational modifications (PTMs) promoted by nitric oxide), the antioxidant capacity, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), among others. In addition, the activity of the NADPH-generating enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and NADP-isocitrate dehydrogenase (NADP-ICDH) was followed. Our data revealed that the treatment of both cell lines with pepper fruit extracts altered their antioxidant capacity, enhanced their catalase activity, and considerably reduced the activity of the NADPH-generating enzymes. As a consequence, less H2O2 and NADPH seem to be available to cells, thus avoiding cell proliferation and possibly triggering cell death in both cell lines.

7.
J Exp Bot ; 74(20): 6349-6368, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37157899

RESUMEN

S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Solanum lycopersicum , Reguladores del Crecimiento de las Plantas/metabolismo , Oxidorreductasas/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , S-Nitrosoglutatión/metabolismo , Ácidos Indolacéticos/metabolismo , Homeostasis , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Methods Mol Biol ; 2642: 233-240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36944882

RESUMEN

Hydrogen sulfide (H2S) is a signaling molecule that achieves different regulatory functions in animal and plant cells. The cytosolic enzyme L-cysteine desulfhydrase (LCD; EC 4.4.1.28) catalyzes the conversion of cysteine (L-Cys) to pyruvate and ammonium with the concomitant generation of H2S, this enzyme being considered one of the main sources of H2S in higher plants. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with a specific assay for LCD activity, the present protocol allows identifying diverse LCD isozymes present in different organs (roots, shoots, leaves, and fruits) and plant species including pea, garlic, Arabidopsis, and pepper.


Asunto(s)
Arabidopsis , Sulfuro de Hidrógeno , Cistationina gamma-Liasa , Cisteína , Isoenzimas , Electroforesis en Gel de Poliacrilamida Nativa , Plantas
9.
Front Plant Sci ; 13: 902068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845673

RESUMEN

Cysteine S-nitrosation is a redox-based post-translational modification that mediates nitric oxide (NO) regulation of various aspects of plant growth, development and stress responses. Despite its importance, studies exploring protein signaling pathways that are regulated by S-nitrosation during somatic embryogenesis have not been performed. In the present study, endogenous cysteine S-nitrosation site and S-nitrosated proteins were identified by iodo-TMT labeling during somatic embryogenesis in Brazilian pine, an endangered native conifer of South America. In addition, endogenous -S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase (GSNOR) activity were determined in cell lines with contrasting embryogenic potential. Overall, we identified an array of proteins associated with a large variety of biological processes and molecular functions with some of them already described as important for somatic embryogenesis (Class IV chitinase, pyruvate dehydrogenase E1 and dehydroascorbate reductase). In total, our S-nitrosoproteome analyses identified 18 endogenously S-nitrosated proteins and 50 in vitro S-nitrosated proteins (after GSNO treatment) during cell culture proliferation and embryo development. Furthermore, SNO levels and GSNOR activity were increased during embryo formation. These findings expand our understanding of the Brazilian pine proteome and shed novel insights into the potential use of pharmacological manipulation of NO levels by using NO inhibitors and donors during somatic embryogenesis.

10.
J Plant Physiol ; 274: 153734, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35667195

RESUMEN

The physiological process of fruit ripening is associated with the late developmental stages of plants in which mitochondrial organelles play an important role in the final success of this whole process. Thus, an isobaric tag for relative and absolute quantification (iTRAQ)-based analysis was used to quantify the mitochondrial proteome in pepper fruits in this study. Analysis of both green and red pepper fruits identified a total of 2284 proteins, of which 692 were found to be significantly more abundant in unripe green fruits as compared to red fruits, while 497 showed lower levels as the ripening process proceeded. Of the total number of proteins identified, 2253 (98,6%) were found to share orthologs with Arabidopsis thaliana. Proteomic analysis identified 163 proteins which were categorized as cell components, the major part assigned to cellular, intracellular space and other subcellular locations such as cytosol, plastids and, to a lesser extent, to mitochondria. Of the 224 mitochondrial proteins detected in pepper fruits, 78 and 48 were more abundant in green and red fruits, respectively. The majority of these proteins which displayed differential abundance in both fruit types were involved in the mitochondrial electron transport chain (mETC) and the tricarboxylic acid (TCA) cycle. The abundance levels of the proteins from both pathways were higher in green fruits, except for cytochrome c (CYC2), whose abundance was significantly higher in red fruits. We also investigated cytochrome c oxidase (COX) activity during pepper fruit ripening, as well as in the presence of molecules such as nitric oxide (NO) and hydrogen peroxide (H2O2), which promote thiol-based oxidative post-translational modifications (oxiPTMs). Thus, with the aid of in vitro assays, cytochrome c oxidase (COX) activity was found to be potentially inhibited by the PTMs nitration, S-nitrosation and carbonylation. According to protein abundance data, the final segment of the mETC appears to be a crucial locus with regard to fruit ripening, but also because in this location the biosynthesis of ascorbate, an antioxidant which plays a major role in the metabolism of pepper fruits, occurs.


Asunto(s)
Capsicum , Capsicum/fisiología , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Frutas/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica
11.
Antioxidants (Basel) ; 11(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35453450

RESUMEN

Nitric oxide (NO) is a free radical which modulates protein function and gene expression throughout all stages of plant development. Fruit ripening involves a complex scenario where drastic phenotypical and metabolic changes take place. Pepper fruits are one of the most consumed horticultural products worldwide which, at ripening, undergo crucial phenotypical and biochemical events, with NO and antioxidants being implicated. Based on previous transcriptomic (RNA-Seq), proteomics (iTRAQ), and enzymatic data, this study aimed to identify the ascorbate peroxidase (APX) gene and protein profiles in sweet peppers and to evaluate their potential modulation by NO during fruit ripening. The data show the existence of six CaAPX genes (CaAPX1-CaAPX6) that encode corresponding APX isozymes distributed in cytosol, plastids, mitochondria, and peroxisomes. The time course expression analysis of these genes showed heterogeneous expression patterns throughout the different ripening stages, and also as a consequence of treatment with NO gas. Additionally, six APX isozymes activities (APX I-APX VI) were identified by non-denaturing PAGE, and they were also differentially modulated during maturation and NO treatment. In vitro analyses of fruit samples in the presence of NO donors, peroxynitrite, and glutathione, showed that CaAPX activity was inhibited, thus suggesting that different posttranslational modifications (PTMs), including S-nitrosation, Tyr-nitration, and glutathionylation, respectively, may occur in APX isozymes. In silico analysis of the protein tertiary structure showed that residues Cys32 and Tyr235 were conserved in the six CaAPXs, and are thus likely potential targets for S-nitrosation and nitration, respectively. These data highlight the complex mechanisms of the regulation of APX isozymes during the ripening process of sweet pepper fruits and how NO can exert fine control. This information could be useful for postharvest technology; NO regulates H2O2 levels through the different APX isozymes and, consequently, could modulate the shelf life and nutritional quality of pepper fruits.

12.
Plant Cell Physiol ; 63(7): 889-900, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35323963

RESUMEN

The thiol group of cysteine (Cys) residues, often present in the active center of the protein, is of particular importance to protein function, which is significantly determined by the redox state of a protein's environment. Our knowledge of different thiol-based oxidative posttranslational modifications (oxiPTMs), which compete for specific protein thiol groups, has increased over the last 10 years. The principal oxiPTMs include S-sulfenylation, S-glutathionylation, S-nitrosation, persulfidation, S-cyanylation and S-acylation. The role of each oxiPTM depends on the redox cellular state, which in turn depends on cellular homeostasis under either optimal or stressful conditions. Under such conditions, the metabolism of molecules such as glutathione, NADPH (reduced nicotinamide adenine dinucleotide phosphate), nitric oxide, hydrogen sulfide and hydrogen peroxide can be altered, exacerbated and, consequently, outside the cell's control. This review provides a broad overview of these oxiPTMs under physiological and unfavorable conditions, which can regulate the function of target proteins.


Asunto(s)
Proteínas de Plantas , Compuestos de Sulfhidrilo , Glutatión/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Compuestos de Sulfhidrilo/metabolismo
13.
J Exp Bot ; 73(17): 5947-5960, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35325926

RESUMEN

Fruit ripening is a physiological process that involves a complex network of signaling molecules that act as switches to activate or deactivate certain metabolic pathways at different levels, not only by regulating gene and protein expression but also through post-translational modifications of the involved proteins. Ethylene is the distinctive molecule that regulates the ripening of fruits, which can be classified as climacteric or non-climacteric according to whether or not, respectively, they are dependent on this phytohormone. However, in recent years it has been found that other molecules with signaling potential also exert regulatory roles, not only individually but also as a result of interactions among them. These observations imply the existence of mutual and hierarchical regulations that sometimes make it difficult to identify the initial triggering event. Among these 'new' molecules, hydrogen peroxide, nitric oxide, and melatonin have been highlighted as prominent. This review provides a comprehensive outline of the relevance of these molecules in the fruit ripening process and the complex network of the known interactions among them.


Asunto(s)
Melatonina , Óxido Nítrico , Etilenos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Melatonina/metabolismo , Óxido Nítrico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Estudios Prospectivos , Especies Reactivas de Oxígeno/metabolismo
14.
Antioxidants (Basel) ; 10(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34829557

RESUMEN

Protein persulfidation is a post-translational modification (PTM) mediated by hydrogen sulfide (H2S), which affects the thiol group of cysteine residues from target proteins and can have a positive, negative or zero impact on protein function. Due to advances in proteomic techniques, the number of potential protein targets identified in higher plants, which are affected by this PTM, has increased considerably. However, its precise impact on biological function needs to be evaluated at the experimental level in purified proteins in order to identify the specific cysteine(s) residue(s) affected. It also needs to be evaluated at the cellular redox level given the potential interactions among different oxidative post-translational modifications (oxiPTMs), such as S-nitrosation, glutathionylation, sulfenylation, S-cyanylation and S-acylation, which also affect thiol groups. This review aims to provide an updated and comprehensive overview of the important physiological role exerted by persulfidation in higher plants, which acts as a cellular mechanism of protein protection against irreversible oxidation.

15.
J Exp Bot ; 72(3): 941-958, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33165620

RESUMEN

Nitric oxide (NO) has been implicated as part of the ripening regulatory network in fleshy fruits. However, very little is known about the simultaneous action of NO on the network of regulatory events and metabolic reactions behind ripening-related changes in fruit color, taste, aroma and nutritional value. Here, we performed an in-depth characterization of the concomitant changes in tomato (Solanum lycopersicum) fruit transcriptome and metabolome associated with the delayed-ripening phenotype caused by NO supplementation at the pre-climacteric stage. Approximately one-third of the fruit transcriptome was altered in response to NO, including a multilevel down-regulation of ripening regulatory genes, which in turn restricted the production and tissue sensitivity to ethylene. NO also repressed hydrogen peroxide-scavenging enzymes, intensifying nitro-oxidative stress and S-nitrosation and nitration events throughout ripening. Carotenoid, tocopherol, flavonoid and ascorbate biosynthesis were differentially affected by NO, resulting in overaccumulation of ascorbate (25%) and flavonoids (60%), and impaired lycopene production. In contrast, the biosynthesis of compounds related to tomato taste (sugars, organic acids, amino acids) and aroma (volatiles) was slightly affected by NO. Our findings indicate that NO triggers extensive transcriptional and metabolic rewiring at the early ripening stage, modifying tomato antioxidant composition with minimal impact on fruit taste and aroma.


Asunto(s)
Frutas/fisiología , Óxido Nítrico/fisiología , Solanum lycopersicum/fisiología , Etilenos , Regulación de la Expresión Génica de las Plantas , Fenotipo
16.
Antioxidants (Basel) ; 9(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957493

RESUMEN

Capsicum is the genus where a number of species and varieties have pungent features due to the exclusive content of capsaicinoids such as capsaicin and dihydrocapsaicin. In this work, the main enzymatic and non-enzymatic systems in pepper fruits from four varieties with different pungent capacity have been investigated at two ripening stages. Thus, a sweet pepper variety (Melchor) from California-type fruits and three autochthonous Spanish varieties which have different pungency levels were used, including Piquillo, Padrón and Alegría riojana. The capsaicinoids contents were determined in the pericarp and placenta from fruits, showing that these phenyl-propanoids were mainly localized in placenta. The activity profiles of catalase, total and isoenzymatic superoxide dismutase (SOD), the enzymes of the ascorbate-glutathione cycle (AGC) and four NADP-dehydrogenases indicate that some interaction with capsaicinoid metabolism seems to occur. Among the results obtained on enzymatic antioxidants, the role of Fe-SOD and the glutathione reductase from the AGC is highlighted. Additionally, it was found that ascorbate and glutathione contents were higher in those pepper fruits which displayed the greater contents of capsaicinoids. Taken together, all these data indicate that antioxidants may contribute to preserve capsaicinoids metabolism to maintain their functionality in a framework where NADPH is perhaps playing an essential role.

17.
Redox Biol ; 34: 101525, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505768

RESUMEN

Catalase is a powerful antioxidant metalloenzyme located in peroxisomes which also plays a central role in signaling processes under physiological and adverse situations. Whereas animals contain a single catalase gene, in plants this enzyme is encoded by a multigene family providing multiple isoenzymes whose number varies depending on the species, and their expression is regulated according to their tissue/organ distribution and the environmental conditions. This enzyme can be modulated by reactive oxygen and nitrogen species (ROS/RNS) as well as by hydrogen sulfide (H2S). Catalase is the major protein undergoing Tyr-nitration [post-translational modification (PTM) promoted by RNS] during fruit ripening, but the enzyme from diverse sources is also susceptible to undergo other activity-modifying PTMs. Data on S-nitrosation and persulfidation of catalase from different plant origins are given and compared here with results from obese children where S-nitrosation of catalase occurs. The cysteine residues prone to be S-nitrosated in catalase from plants and from bovine liver have been identified. These evidences assign to peroxisomes a crucial statement in the signaling crossroads among relevant molecules (NO and H2S), since catalase is allocated in these organelles. This review depicts a scenario where the regulation of catalase through PTMs, especially S-nitrosation and persulfidation, is highlighted.


Asunto(s)
Sulfuro de Hidrógeno , Plantas , Animales , Catalasa/genética , Bovinos , Niño , Humanos , Óxido Nítrico , Peroxisomas , Plantas/genética , Especies de Nitrógeno Reactivo
18.
Front Plant Sci ; 11: 485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477380

RESUMEN

Superoxide radical (O2 •-) is involved in numerous physiological and stress processes in higher plants. Fruit ripening encompasses degradative and biosynthetic pathways including reactive oxygen and nitrogen species. With the use of sweet pepper (Capsicum annuum L.) fruits at different ripening stages and under a nitric oxide (NO)-enriched environment, the metabolism of O2 •- was evaluated at biochemical and molecular levels considering the O2 •- generation by a NADPH oxidase system and its dismutation by superoxide dismutase (SOD). At the biochemical level, seven O2 •--generating NADPH-dependent oxidase isozymes [also called respiratory burst oxidase homologs (RBOHs) I-VII], with different electrophoretic mobility and abundance, were detected considering all ripening stages from green to red fruits and NO environment. Globally, this system was gradually increased from green to red stage with a maximum of approximately 2.4-fold increase in red fruit compared with green fruit. Significantly, breaking-point (BP) fruits with and without NO treatment both showed intermediate values between those observed in green and red peppers, although the value in NO-treated fruits was lower than in BP untreated fruits. The O2 •--generating NADPH oxidase isozymes I and VI were the most affected. On the other hand, four SOD isozymes were identified by non-denaturing electrophoresis: one Mn-SOD, one Fe-SOD, and two CuZn-SODs. However, none of these SOD isozymes showed any significant change during the ripening from green to red fruits or under NO treatment. In contrast, at the molecular level, both RNA-sequencing and real-time quantitative PCR analyses revealed different patterns with downregulation of four genes RBOH A, C, D, and E during pepper fruit ripening. On the contrary, it was found out the upregulation of a Mn-SOD gene in the ripening transition from immature green to red ripe stages, whereas a Fe-SOD gene was downregulated. In summary, the data reveal a contradictory behavior between activity and gene expression of the enzymes involved in the metabolism of O2 •- during the ripening of pepper fruit. However, it could be concluded that the prevalence and regulation of the O2 •- generation system (NADPH oxidase-like) seem to be essential for an appropriate control of the pepper fruit ripening, which, additionally, is modulated in the presence of a NO-enriched environment.

19.
Antioxidants (Basel) ; 8(9)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487955

RESUMEN

During the ripening of sweet pepper (Capsicum annuum L.) fruits, in a genetically controlled scenario, enormous metabolic changes occur that affect the physiology of most cell compartments. Peroxisomal catalase gene expression decreases after pepper fruit ripening, while the enzyme is also susceptible to undergo post-translational modifications (nitration, S-nitrosation, and oxidation) promoted by reactive oxygen and nitrogen species (ROS/RNS). Unlike most plant catalases, the pepper fruit enzyme acts as a homodimer, with an atypical native molecular mass of 125 to 135 kDa and an isoelectric point of 7.4, which is higher than that of most plant catalases. These data suggest that ROS/RNS could be essential to modulate the role of catalase in maintaining basic cellular peroxisomal functions during pepper fruit ripening when nitro-oxidative stress occurs. Using catalase from bovine liver as a model and biotin-switch labeling, in-gel trypsin digestion, and nanoliquid chromatography coupled with mass spectrometry, it was found that Cys377 from the bovine enzyme could potentially undergo S-nitrosation. To our knowledge, this is the first report of a cysteine residue from catalase that can be post-translationally modified by S-nitrosation, which makes it especially important to find the target points where the enzyme can be modulated under either physiological or adverse conditions.

20.
J Exp Bot ; 70(17): 4405-4417, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31359063

RESUMEN

Fruits are unique to flowering plants and confer a selective advantage as they facilitate seed maturation and dispersal. In fleshy fruits, development and ripening are associated with numerous structural, biochemical, and physiological changes, including modifications in the general appearance, texture, flavor, and aroma, which ultimately convert the immature fruit into a considerably more attractive and palatable structure for seed dispersal by animals. Treatment with exogenous nitric oxide (NO) delays fruit ripening, prevents chilling damage, promotes disease resistance, and enhances the nutritional value. The ripening process is influenced by NO, which operates antagonistically to ethylene, but it also interacts with other regulatory molecules such as abscisic acid, auxin, jasmonic acid, salicylic acid, melatonin, and hydrogen sulfide. NO content progressively declines during fruit ripening, with concomitant increases in protein nitration and nitrosation, two post-translational modifications that are promoted by reactive nitrogen species. Dissecting the intimate interactions of NO with other ripening-associated factors, including reactive oxygen species, antioxidants, and the aforementioned phytohormones, remains a challenging subject of research. In this context, integrative 'omics' and gene-editing approaches may provide additional knowledge of the impact of NO in the regulatory processes involved in controlling physiology and quality traits in both climacteric and non-climacteric fruits.


Asunto(s)
Frío , Frutas/fisiología , Óxido Nítrico/metabolismo , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Frutas/crecimiento & desarrollo , Enfermedades de las Plantas/etiología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...