Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7725, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001082

RESUMEN

Current therapies for myeloproliferative neoplasms (MPNs) improve symptoms but have limited effect on tumor size. In preclinical studies, tamoxifen restored normal apoptosis in mutated hematopoietic stem/progenitor cells (HSPCs). TAMARIN Phase-II, multicenter, single-arm clinical trial assessed tamoxifen's safety and activity in patients with stable MPNs, no prior thrombotic events and mutated JAK2V617F, CALRins5 or CALRdel52 peripheral blood allele burden ≥20% (EudraCT 2015-005497-38). 38 patients were recruited over 112w and 32 completed 24w-treatment. The study's A'herns success criteria were met as the primary outcome ( ≥ 50% reduction in mutant allele burden at 24w) was observed in 3/38 patients. Secondary outcomes included ≥25% reduction at 24w (5/38), ≥50% reduction at 12w (0/38), thrombotic events (2/38), toxicities, hematological response, proportion of patients in each IWG-MRT response category and ELN response criteria. As exploratory outcomes, baseline analysis of HSPC transcriptome segregates responders and non-responders, suggesting a predictive signature. In responder HSPCs, longitudinal analysis shows high baseline expression of JAK-STAT signaling and oxidative phosphorylation genes, which are downregulated by tamoxifen. We further demonstrate in preclinical studies that in JAK2V617F+ cells, 4-hydroxytamoxifen inhibits mitochondrial complex-I, activates integrated stress response and decreases pathogenic JAK2-signaling. These results warrant further investigation of tamoxifen in MPN, with careful consideration of thrombotic risk.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Humanos , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Células Madre Hematopoyéticas/metabolismo , Transducción de Señal , Neoplasias/metabolismo , Tamoxifeno/uso terapéutico , Tamoxifeno/metabolismo , Mutación , Calreticulina/genética , Calreticulina/metabolismo
2.
Nat Commun ; 14(1): 6062, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770432

RESUMEN

Hematopoietic stem cells (HSCs) residing in specialized niches in the bone marrow are responsible for the balanced output of multiple short-lived blood cell lineages in steady-state and in response to different challenges. However, feedback mechanisms by which HSCs, through their niches, sense acute losses of specific blood cell lineages remain to be established. While all HSCs replenish platelets, previous studies have shown that a large fraction of HSCs are molecularly primed for the megakaryocyte-platelet lineage and are rapidly recruited into proliferation upon platelet depletion. Platelets normally turnover in an activation-dependent manner, herein mimicked by antibodies inducing platelet activation and depletion. Antibody-mediated platelet activation upregulates expression of Interleukin-1 (IL-1) in platelets, and in bone marrow extracellular fluid in vivo. Genetic experiments demonstrate that rather than IL-1 directly activating HSCs, activation of bone marrow Lepr+ perivascular niche cells expressing IL-1 receptor is critical for the optimal activation of quiescent HSCs upon platelet activation and depletion. These findings identify a feedback mechanism by which activation-induced depletion of a mature blood cell lineage leads to a niche-dependent activation of HSCs to reinstate its homeostasis.


Asunto(s)
Interleucina-1 , Trombocitopenia , Humanos , Interleucina-1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Megacariocitos , Trombocitopenia/metabolismo
3.
Nat Genet ; 55(9): 1531-1541, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37666991

RESUMEN

Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 'multihit' HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types.


Asunto(s)
Leucemia , Multiómica , Humanos , Proteínas de Neoplasias , Inflamación/genética , Alelos , Leucemia/genética , Proteína p53 Supresora de Tumor/genética
4.
Blood ; 141(11): 1316-1321, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36493342

RESUMEN

Myelodysplastic neoplasms (MDSs) and chronic myelomonocytic leukemia (CMML) are clonal disorders driven by progressively acquired somatic mutations in hematopoietic stem cells (HSCs). Hypomethylating agents (HMAs) can modify the clinical course of MDS and CMML. Clinical improvement does not require eradication of mutated cells and may be related to improved differentiation capacity of mutated HSCs. However, in patients with established disease it is unclear whether (1) HSCs with multiple mutations progress through differentiation with comparable frequency to their less mutated counterparts or (2) improvements in peripheral blood counts following HMA therapy are driven by residual wild-type HSCs or by clones with particular combinations of mutations. To address these questions, the somatic mutations of individual stem cells, progenitors (common myeloid progenitors, granulocyte monocyte progenitors, and megakaryocyte erythroid progenitors), and matched circulating hematopoietic cells (monocytes, neutrophils, and naïve B cells) in MDS and CMML were characterized via high-throughput single-cell genotyping, followed by bulk analysis in immature and mature cells before and after AZA treatment. The mutational burden was similar throughout differentiation, with even the most mutated stem and progenitor clones maintaining their capacity to differentiate to mature cell types in vivo. Increased contributions from productive mutant progenitors appear to underlie improved hematopoiesis in MDS following HMA therapy.


Asunto(s)
Leucemia Mielomonocítica Crónica , Síndromes Mielodisplásicos , Humanos , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Células Madre Hematopoyéticas/metabolismo , Monocitos , Células Clonales
5.
Cancers (Basel) ; 14(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36497471

RESUMEN

Epigenetic modifications, such as histone modifications and DNA methylation, are essential for ensuring the dynamic control of gene regulation in every cell type. These modifications are associated with gene activation or repression, depending on the genomic context and specific type of modification. In both cases, they are deposited and removed by epigenetic modifier proteins. In acute myeloid leukemia (AML), the function of these proteins is perturbed through genetic mutations (i.e., in the DNA methylation machinery) or translocations (i.e., MLL-rearrangements) arising during leukemogenesis. This can lead to an imbalance in the epigenomic landscape, which drives aberrant gene expression patterns. New technological advances, such as CRISPR editing, are now being used to precisely model genetic mutations and chromosomal translocations. In addition, high-precision epigenomic editing using dCas9 or CRISPR base editing are being used to investigate the function of epigenetic mechanisms in gene regulation. To interrogate these mechanisms at higher resolution, advances in single-cell techniques have begun to highlight the heterogeneity of epigenomic landscapes and how these impact on gene expression within different AML populations in individual cells. Combined, these technologies provide a new lens through which to study the role of epigenetic modifications in normal hematopoiesis and how the underlying mechanisms can be hijacked in the context of malignancies such as AML.

6.
Nat Commun ; 12(1): 7019, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857757

RESUMEN

Yolk sac (YS) hematopoiesis is critical for the survival of the embryo and a major source of tissue-resident macrophages that persist into adulthood. Yet, the transcriptional and epigenetic regulation of YS hematopoiesis remains poorly characterized. Here we report that the epigenetic regulator Ezh2 is essential for YS hematopoiesis but dispensable for subsequent aorta-gonad-mesonephros (AGM) blood development. Loss of EZH2 activity in hemogenic endothelium (HE) leads to the generation of phenotypically intact but functionally deficient erythro-myeloid progenitors (EMPs), while the generation of primitive erythroid cells is not affected. EZH2 activity is critical for the generation of functional EMPs at the onset of the endothelial-to-hematopoietic transition but subsequently dispensable. We identify a lack of Wnt signaling downregulation as the primary reason for the production of non-functional EMPs. Together, our findings demonstrate a critical and stage-specific role of Ezh2 in modulating Wnt signaling during the generation of EMPs from YS HE.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Células Eritroides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Células Progenitoras Mieloides/metabolismo , Proteínas de Transporte Vesicular/genética , Saco Vitelino/metabolismo , Animales , Diferenciación Celular , Embrión de Mamíferos , Proteína Potenciadora del Homólogo Zeste 2/deficiencia , Epigénesis Genética , Células Eritroides/citología , Femenino , Feto , Genes Reporteros , Hematopoyesis/genética , Hígado/citología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Células Progenitoras Mieloides/patología , Cultivo Primario de Células , Proteínas de Transporte Vesicular/metabolismo , Vía de Señalización Wnt , Saco Vitelino/citología , Saco Vitelino/crecimiento & desarrollo , Proteína Fluorescente Roja
7.
J Exp Med ; 218(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33416891

RESUMEN

Juvenile myelomonocytic leukemia (JMML) is a poor-prognosis childhood leukemia usually caused by RAS-pathway mutations. The cellular hierarchy in JMML is poorly characterized, including the identity of leukemia stem cells (LSCs). FACS and single-cell RNA sequencing reveal marked heterogeneity of JMML hematopoietic stem/progenitor cells (HSPCs), including an aberrant Lin-CD34+CD38-CD90+CD45RA+ population. Single-cell HSPC index-sorting and clonogenic assays show that (1) all somatic mutations can be backtracked to the phenotypic HSC compartment, with RAS-pathway mutations as a "first hit," (2) mutations are acquired with both linear and branching patterns of clonal evolution, and (3) mutant HSPCs are present after allogeneic HSC transplant before molecular/clinical evidence of relapse. Stem cell assays reveal interpatient heterogeneity of JMML LSCs, which are present in, but not confined to, the phenotypic HSC compartment. RNA sequencing of JMML LSC reveals up-regulation of stem cell and fetal genes (HLF, MEIS1, CNN3, VNN2, and HMGA2) and candidate therapeutic targets/biomarkers (MTOR, SLC2A1, and CD96), paving the way for LSC-directed disease monitoring and therapy in this disease.


Asunto(s)
Células Madre Hematopoyéticas/patología , Leucemia Mielomonocítica Juvenil/patología , Animales , Biomarcadores de Tumor/genética , Línea Celular , Femenino , Humanos , Leucemia Mielomonocítica Juvenil/genética , Masculino , Ratones , Mutación/genética , Células Madre Neoplásicas/patología , Transducción de Señal/genética , Regulación hacia Arriba/genética
8.
STAR Protoc ; 1(3): 100125, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377019

RESUMEN

Single-cell RNA-sequencing technologies are ideally placed to resolve intratumoral heterogeneity. However, the lack of coverage across key mutation hotspots has precluded the correlation of genetic and transcriptional readouts from the same single cell. To overcome this, we developed TARGET-seq, a protocol for TARGETed high-sensitivity single-cell mutational analysis with extremely low allelic dropout rates, parallel RNA SEQuencing, and cell-surface proteomics. Here, we present a detailed step-by-step protocol for TARGET-seq, including troubleshooting tips, approaches for automation, and methods for high-throughput multiplexing of libraries. For complete details on the use and execution of this protocol, please refer to Rodriguez-Meira et al. (2019).


Asunto(s)
Análisis Mutacional de ADN/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Secuencia de Bases/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación/genética , Secuenciación del Exoma/métodos
10.
Mol Cell ; 78(3): 477-492.e8, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386542

RESUMEN

Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage- hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.


Asunto(s)
Hematopoyesis/fisiología , Megacariocitos/patología , Mielofibrosis Primaria/sangre , Anciano , Anciano de 80 o más Años , Diferenciación Celular , Femenino , Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Megacariocitos/fisiología , Persona de Mediana Edad , Mutación , Receptores Inmunológicos/genética , Análisis de la Célula Individual/métodos
11.
Cancer Cell ; 37(5): 690-704.e8, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32330454

RESUMEN

Acute erythroid leukemia (AEL) commonly involves both myeloid and erythroid lineage transformation. However, the mutations that cause AEL and the cell(s) that sustain the bilineage leukemia phenotype remain unknown. We here show that combined biallelic Cebpa and Gata2 zinc finger-1 (ZnF1) mutations cooperatively induce bilineage AEL, and that the major leukemia-initiating cell (LIC) population has a neutrophil-monocyte progenitor (NMP) phenotype. In pre-leukemic NMPs Cebpa and Gata2 mutations synergize by increasing erythroid transcription factor (TF) expression and erythroid TF chromatin access, respectively, thereby installing ectopic erythroid potential. This erythroid-permissive chromatin conformation is retained in bilineage LICs. These results demonstrate that synergistic transcriptional and epigenetic reprogramming by leukemia-initiating mutations can generate neomorphic pre-leukemic progenitors, defining the lineage identity of the resulting leukemia.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/genética , Linaje de la Célula , Transformación Celular Neoplásica/patología , Células Precursoras Eritroides/patología , Factor de Transcripción GATA2/genética , Leucemia Eritroblástica Aguda/patología , Mutación , Neutrófilos/patología , Anciano , Alelos , Animales , Diferenciación Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Células Precursoras Eritroides/metabolismo , Femenino , Factor de Transcripción GATA1/genética , Humanos , Leucemia Eritroblástica Aguda/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neutrófilos/metabolismo , Dedos de Zinc
14.
Nat Commun ; 10(1): 2115, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31073170

RESUMEN

Approximately 30% of ERα breast cancer patients relapse with metastatic disease following adjuvant endocrine therapies. The connection between acquisition of drug resistance and invasive potential is poorly understood. In this study, we demonstrate that the type II keratin topological associating domain undergoes epigenetic reprogramming in aromatase inhibitors (AI)-resistant cells, leading to Keratin-80 (KRT80) upregulation. KRT80 expression is driven by de novo enhancer activation by sterol regulatory element-binding protein 1 (SREBP1). KRT80 upregulation directly promotes cytoskeletal rearrangements at the leading edge, increased focal adhesion and cellular stiffening, collectively promoting cancer cell invasion. Shearwave elasticity imaging performed on prospectively recruited patients confirms KRT80 levels correlate with stiffer tumors. Immunohistochemistry showed increased KRT80-positive cells at relapse and, using several clinical endpoints, KRT80 expression associates with poor survival. Collectively, our data uncover an unpredicted and potentially targetable direct link between epigenetic and cytoskeletal reprogramming promoting cell invasion in response to chronic AI treatment.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/patología , Citoesqueleto/patología , Queratinas Tipo II/genética , Recurrencia Local de Neoplasia/patología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Antineoplásicos Hormonales/uso terapéutico , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Citoesqueleto/genética , Resistencia a Antineoplásicos/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Queratinas Tipo II/metabolismo , Células MCF-7 , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/mortalidad , Pronóstico , Dominios Proteicos/genética , Regulación hacia Arriba
15.
Haematologica ; 104(11): 2215-2224, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975913

RESUMEN

Somatic mutations in acute myeloid leukemia are acquired sequentially and hierarchically. First, pre-leukemic mutations, such as t(8;21) that encodes AML1-ETO, are acquired within the hematopoietic stem cell (HSC) compartment, while signaling pathway mutations, including KRAS activating mutations, are late events acquired during transformation of leukemic progenitor cells and are rarely detectable in HSC. This raises the possibility that signaling pathway mutations are detrimental to clonal expansion of pre-leukemic HSC. To address this hypothesis, we used conditional genetics to introduce Aml1-ETO and K-RasG12D into murine HSC, either individually or in combination. In the absence of activated Ras, Aml1-ETO-expressing HSC conferred a competitive advantage. However, activated K-Ras had a marked detrimental effect on Aml1-ETO-expressing HSC, leading to loss of both phenotypic and functional HSC. Cell cycle analysis revealed a loss of quiescence in HSC co-expressing Aml1-ETO and K-RasG12D, accompanied by an enrichment in E2F and Myc target gene expression and depletion of HSC self-renewal-associated gene expression. These findings provide a mechanistic basis for the observed absence of KRAS signaling mutations in the pre-malignant HSC compartment.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mutación , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína 1 Compañera de Translocación de RUNX1/genética , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Animales , Proliferación Celular/genética , Expresión Génica , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones Transgénicos , Modelos Animales , Modelos Biológicos , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo
16.
Mol Cell ; 73(6): 1292-1305.e8, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30765193

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for resolving transcriptional heterogeneity. However, its application to studying cancerous tissues is currently hampered by the lack of coverage across key mutation hotspots in the vast majority of cells; this lack of coverage prevents the correlation of genetic and transcriptional readouts from the same single cell. To overcome this, we developed TARGET-seq, a method for the high-sensitivity detection of multiple mutations within single cells from both genomic and coding DNA, in parallel with unbiased whole-transcriptome analysis. Applying TARGET-seq to 4,559 single cells, we demonstrate how this technique uniquely resolves transcriptional and genetic tumor heterogeneity in myeloproliferative neoplasms (MPN) stem and progenitor cells, providing insights into deregulated pathways of mutant and non-mutant cells. TARGET-seq is a powerful tool for resolving the molecular signatures of genetically distinct subclones of cancer cells.


Asunto(s)
Biomarcadores de Tumor/genética , Análisis Mutacional de ADN/métodos , Heterogeneidad Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia/genética , Mutación , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Células Jurkat , Células K562 , Reproducibilidad de los Resultados , Schizosaccharomyces/genética
17.
Mol Aspects Med ; 59: 85-94, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28863981

RESUMEN

The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application.


Asunto(s)
Leucemia/patología , Análisis de la Célula Individual/métodos , Animales , Genómica/métodos , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Humanos
18.
Nat Med ; 23(6): 692-702, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28504724

RESUMEN

Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.


Asunto(s)
Crisis Blástica/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Células Madre Neoplásicas/metabolismo , Análisis de la Célula Individual , Adulto , Anciano , Inmunoprecipitación de Cromatina , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Citometría de Flujo , Biblioteca de Genes , Genes abl/genética , Humanos , Hibridación Fluorescente in Situ , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Transcriptoma , Adulto Joven
19.
Semin Cancer Biol ; 32: 3-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24530939

RESUMEN

Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future.


Asunto(s)
Transformación Celular Neoplásica/genética , Reprogramación Celular/genética , Neoplasias/genética , Células Madre Neoplásicas , Oncogenes/genética , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Modelos Biológicos , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...