Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 18(12): 3821-3855, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37833423

RESUMEN

One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias/prevención & control , Reproducibilidad de los Resultados , Sacarosa
2.
Nat Commun ; 14(1): 4668, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537212

RESUMEN

Chikungunya virus (CHIKV) infection has been associated with severe cardiac manifestations, yet, how CHIKV infection leads to heart disease remains unknown. Here, we leveraged both mouse models and human primary cardiac cells to define the mechanisms of CHIKV heart infection. Using an immunocompetent mouse model of CHIKV infection as well as human primary cardiac cells, we demonstrate that CHIKV directly infects and actively replicates in cardiac fibroblasts. In immunocompetent mice, CHIKV is cleared from cardiac tissue without significant damage through the induction of a local type I interferon response from both infected and non-infected cardiac cells. Using mice deficient in major innate immunity signaling components, we found that signaling through the mitochondrial antiviral-signaling protein (MAVS) is required for viral clearance from the heart. In the absence of MAVS signaling, persistent infection leads to focal myocarditis and vasculitis of the large vessels attached to the base of the heart. Large vessel vasculitis was observed for up to 60 days post infection, suggesting CHIKV can lead to vascular inflammation and potential long-lasting cardiovascular complications. This study provides a model of CHIKV cardiac infection and mechanistic insight into CHIKV-induced heart disease, underscoring the importance of monitoring cardiac function in patients with CHIKV infections.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Enfermedades Transmisibles , Cardiopatías , Vasculitis , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Inflamación , Infección Persistente , Replicación Viral
3.
Nat Commun ; 14(1): 3026, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37230979

RESUMEN

Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets. Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2. Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing a role for an accessory protein in this context.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Ratones , SARS-CoV-2/genética , Animales Recién Nacidos , Hurones , Modelos Animales de Enfermedad , Mesocricetus
4.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36238716

RESUMEN

Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets 1, 2 . Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2 3 . Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing for the first time a role for an accessory protein in this context.

5.
Viruses ; 13(12)2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34960706

RESUMEN

Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.


Asunto(s)
Antivirales/farmacología , Atovacuona/farmacología , Berberina/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células Epiteliales Alveolares , Animales , Berberina/química , Proliferación Celular/efectos de los fármacos , Cloruros/química , Cloruros/farmacología , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Proguanil/farmacología , Células Vero , Virión/efectos de los fármacos
6.
Sci Rep ; 11(1): 5538, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692390

RESUMEN

Understanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Recent studies showed that serum from convalescent patients can display variable neutralization capacities. Still, it remains unclear whether there are specific signatures that can be used to predict neutralization. Here, we performed a detailed analysis of sera from a cohort of 101 recovered healthcare workers and we addressed their SARS-CoV-2 antibody response by ELISA against SARS-CoV-2 Spike receptor binding domain and nucleoprotein. Both ELISA methods detected sustained levels of serum IgG against both antigens. Yet, the majority of individuals from our cohort generated antibodies with low neutralization capacity and only 6% showed high neutralizing titers against both authentic SARS-CoV-2 virus and the Spike pseudotyped virus. Interestingly, higher neutralizing sera correlate with detection of -IgG, IgM and IgA antibodies against both antigens, while individuals with positive IgG alone showed poor neutralization response. These results suggest that having a broader repertoire of antibodies may contribute to more potent SARS-CoV-2 neutralization. Altogether, our work provides a cross sectional snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides preliminary evidence that possessing multiple antibody isotypes can play an important role in predicting SARS-CoV-2 neutralization.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Antivirales/inmunología , COVID-19/terapia , Estudios de Cohortes , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática/métodos , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Pruebas de Neutralización/métodos , Pandemias , SARS-CoV-2/patogenicidad , Suero/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Cell Rep ; 28(2): 460-471.e5, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291581

RESUMEN

Understanding the fundamental mechanisms of arbovirus transmission and pathogenesis is essential to develop strategies for treatment and prevention. We previously took an in vivo evolution-based approach and identified the chikungunya virus E1 glycoprotein residue 80 to play a critical role in viral transmission and pathogenesis. In this study, we address the genetic conservation and function of position 80 and demonstrate that this residue is a key determinant in alphavirus infectivity and dissemination through modulation of viral fusion and cholesterol dependence. In addition, in studying the evolution of position 80, we identified a network of glycoprotein residues, including epidemic determinants, that regulate virus dissemination and infectivity. These studies underscore the importance of taking evolution-based approaches to not only identify key viral determinants driving arbovirus transmission and pathogenesis but also to uncover fundamental aspects of arbovirus biology.


Asunto(s)
Virus Chikungunya/genética , Glicoproteínas/metabolismo , Proteínas del Envoltorio Viral/genética , Virosis/genética , Replicación Viral/genética , Animales , Humanos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...