Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 30(24): 2710-2723, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087715

RESUMEN

Mutations in the U2 snRNP component SF3B1 are prominent in myelodysplastic syndromes (MDSs) and other cancers and have been shown recently to alter branch site (BS) or 3' splice site selection in splicing. However, the molecular mechanism of altered splicing is not known. We show here that hsh155 mutant alleles in Saccharomyces cerevisiae, counterparts of SF3B1 mutations frequently found in cancers, specifically change splicing of suboptimal BS pre-mRNA substrates. We found that Hsh155p interacts directly with Prp5p, the first ATPase that acts during spliceosome assembly, and localized the interacting regions to HEAT (Huntingtin, EF3, PP2A, and TOR1) motifs in SF3B1 associated with disease mutations. Furthermore, we show that mutations in these motifs from both human disease and yeast genetic screens alter the physical interaction with Prp5p, alter branch region specification, and phenocopy mutations in Prp5p. These and other data demonstrate that mutations in Hsh155p and Prp5p alter splicing because they change the direct physical interaction between Hsh155p and Prp5p. This altered physical interaction results in altered loading (i.e., "fidelity") of the BS-U2 duplex into the SF3B complex during prespliceosome formation. These results provide a mechanistic framework to explain the consequences of intron recognition and splicing of SF3B1 mutations found in disease.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos/genética , ARN Helicasas DEAD-box/genética , Humanos , Intrones/genética , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U2/genética , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética
2.
J Biol Chem ; 288(47): 34081-34096, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24106281

RESUMEN

Mammalian genomes encode two provitamin A-converting enzymes as follows: the ß-carotene-15,15'-oxygenase (BCO1) and the ß-carotene-9',10'-oxygenase (BCO2). Symmetric cleavage by BCO1 yields retinoids (ß-15'-apocarotenoids, C20), whereas eccentric cleavage by BCO2 produces long-chain (>C20) apocarotenoids. Here, we used genetic and biochemical approaches to clarify the contribution of these enzymes to provitamin A metabolism. We subjected wild type, Bco1(-/-), Bco2(-/-), and Bco1(-/-)Bco2(-/-) double knock-out mice to a controlled diet providing ß-carotene as the sole source for apocarotenoid production. This study revealed that BCO1 is critical for retinoid homeostasis. Genetic disruption of BCO1 resulted in ß-carotene accumulation and vitamin A deficiency accompanied by a BCO2-dependent production of minor amounts of ß-apo-10'-carotenol (APO10ol). We found that APO10ol can be esterified and transported by the same proteins as vitamin A but with a lower affinity and slower reaction kinetics. In wild type mice, APO10ol was converted to retinoids by BCO1. We also show that a stepwise cleavage by BCO2 and BCO1 with APO10ol as an intermediate could provide a mechanism to tailor asymmetric carotenoids such as ß-cryptoxanthin for vitamin A production. In conclusion, our study provides evidence that mammals employ both carotenoid oxygenases to synthesize retinoids from provitamin A carotenoids.


Asunto(s)
Carotenoides/metabolismo , Dioxigenasas/metabolismo , Vitamina A/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/metabolismo , Animales , Carotenoides/genética , Criptoxantinas , Dioxigenasas/genética , Células Hep G2 , Humanos , Ratones , Ratones Noqueados , Vitamina A/genética , Deficiencia de Vitamina A/enzimología , Deficiencia de Vitamina A/genética , Xantófilas/genética , Xantófilas/metabolismo , beta Caroteno/genética , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA