Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 548(7666): 234-238, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28783719

RESUMEN

Approximately 200 BRAF mutant alleles have been identified in human tumours. Activating BRAF mutants cause feedback inhibition of GTP-bound RAS, are RAS-independent and signal either as active monomers (class 1) or constitutively active dimers (class 2). Here we characterize a third class of BRAF mutants-those that have impaired kinase activity or are kinase-dead. These mutants are sensitive to ERK-mediated feedback and their activation of signalling is RAS-dependent. The mutants bind more tightly than wild-type BRAF to RAS-GTP, and their binding to and activation of wild-type CRAF is enhanced, leading to increased ERK signalling. The model suggests that dysregulation of signalling by these mutants in tumours requires coexistent mechanisms for maintaining RAS activation despite ERK-dependent feedback. Consistent with this hypothesis, melanomas with these class 3 BRAF mutations also harbour RAS mutations or NF1 deletions. By contrast, in lung and colorectal cancers with class 3 BRAF mutants, RAS is typically activated by receptor tyrosine kinase signalling. These tumours are sensitive to the inhibition of RAS activation by inhibitors of receptor tyrosine kinases. We have thus defined three distinct functional classes of BRAF mutants in human tumours. The mutants activate ERK signalling by different mechanisms that dictate their sensitivity to therapeutic inhibitors of the pathway.


Asunto(s)
Melanoma/enzimología , Melanoma/genética , Mutación , Proteína Oncogénica p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Células 3T3 NIH , Neurofibromatosis 1/genética , Proteína Oncogénica p21(ras)/metabolismo , Multimerización de Proteína , Piridonas/farmacología , Pirimidinonas/farmacología , Sulfonamidas/farmacología , Vemurafenib , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nature ; 534(7606): 272-6, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279227

RESUMEN

Precision medicines exert selective pressure on tumour cells that leads to the preferential growth of resistant subpopulations, necessitating the development of next-generation therapies to treat the evolving cancer. The PIK3CA-AKT-mTOR pathway is one of the most commonly activated pathways in human cancers, which has led to the development of small-molecule inhibitors that target various nodes in the pathway. Among these agents, first-generation mTOR inhibitors (rapalogs) have caused responses in 'N-of-1' cases, and second-generation mTOR kinase inhibitors (TORKi) are currently in clinical trials. Here we sought to delineate the likely resistance mechanisms to existing mTOR inhibitors in human cell lines, as a guide for next-generation therapies. The mechanism of resistance to the TORKi was unusual in that intrinsic kinase activity of mTOR was increased, rather than a direct active-site mutation interfering with drug binding. Indeed, identical drug-resistant mutations have been also identified in drug-naive patients, suggesting that tumours with activating MTOR mutations will be intrinsically resistant to second-generation mTOR inhibitors. We report the development of a new class of mTOR inhibitors that overcomes resistance to existing first- and second-generation inhibitors. The third-generation mTOR inhibitor exploits the unique juxtaposition of two drug-binding pockets to create a bivalent interaction that allows inhibition of these resistant mutants.


Asunto(s)
Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Animales , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Ratones , Mutación/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Inhibidores de Proteínas Quinasas/clasificación , Estructura Terciaria de Proteína/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancer Discov ; 1(3): 248-59, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22140653

RESUMEN

UNLABELLED: mTOR kinase inhibitors block mTORC1 and mTORC2 and thus do not cause the mTORC2 activation of AKT observed with rapamycin. We now show, however, that these drugs have a biphasic effect on AKT. Inhibition of mTORC2 leads to AKT serine 473 (S473) dephosphorylation and a rapid but transient inhibition of AKT T308 phosphorylation and AKT signaling. However, inhibition of mTOR kinase also relieves feedback inhibition of receptor tyrosine kinases (RTK), leading to subsequent phosphoinositide 3-kinase activation and rephosphorylation of AKT T308 sufficient to reactivate AKT activity and signaling. Thus, catalytic inhibition of mTOR kinase leads to a new steady state characterized by profound suppression of mTORC1 and accumulation of activated AKT phosphorylated on T308, but not S473. Combined inhibition of mTOR kinase and the induced RTKs fully abolishes AKT signaling and results in substantial cell death and tumor regression in vivo. These findings reveal the adaptive capabilities of oncogenic signaling networks and the limitations of monotherapy for inhibiting feedback-regulated pathways. SIGNIFICANCE: The results of this study show the adaptive capabilities of oncogenic signaling networks, as AKT signaling becomes reactivated through a feedback-induced AKT species phosphorylated on T308 but lacking S473. The addition of RTK inhibitors can prevent this reactivation of AKT signaling and cause profound cell death and tumor regression in vivo, highlighting the possible need for combinatorial approaches to block feedback-regulated pathways.


Asunto(s)
Proteínas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular Tumoral , Femenino , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Desnudos , Morfolinas/farmacología , Complejos Multiproteicos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...