Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(42): eadi3827, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37851813

RESUMEN

An iontronic-based artificial tactile nerve is a promising technology for emulating the tactile recognition and learning of human skin with low power consumption. However, its weak tactile memory and complex integration structure remain challenging. We present an ion trap and release dynamics (iTRD)-driven, neuro-inspired monolithic artificial tactile neuron (NeuroMAT) that can achieve tactile perception and memory consolidation in a single device. Through the tactile-driven release of ions initially trapped within iTRD-iongel, NeuroMAT only generates nonintrusive synaptic memory signals when mechanical stress is applied under voltage stimulation. The induced tactile memory is augmented by auxiliary voltage pulses independent of tactile sensing signals. We integrate NeuroMAT with an anthropomorphic robotic hand system to imitate memory-based human motion; the robust tactile memory of NeuroMAT enables the hand to consistently perform reliable gripping motion.


Asunto(s)
Percepción del Tacto , Tacto , Humanos , Tacto/fisiología , Piel , Aprendizaje , Células Receptoras Sensoriales
2.
Sci Adv ; 9(27): eadg5946, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37406117

RESUMEN

Extracting valuable information from the overflowing data is a critical yet challenging task. Dealing with high volumes of biometric data, which are often unstructured, nonstatic, and ambiguous, requires extensive computer resources and data specialists. Emerging neuromorphic computing technologies that mimic the data processing properties of biological neural networks offer a promising solution for handling overflowing data. Here, the development of an electrolyte-gated organic transistor featuring a selective transition from short-term to long-term plasticity of the biological synapse is presented. The memory behaviors of the synaptic device were precisely modulated by restricting ion penetration through an organic channel via photochemical reactions of the cross-linking molecules. Furthermore, the applicability of the memory-controlled synaptic device was verified by constructing a reconfigurable synaptic logic gate for implementing a medical algorithm without further weight-update process. Last, the presented neuromorphic device demonstrated feasibility to handle biometric information with various update periods and perform health care tasks.


Asunto(s)
Redes Neurales de la Computación , Sinapsis
3.
Nat Commun ; 14(1): 5, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596783

RESUMEN

With advances in robotic technology, the complexity of control of robot has been increasing owing to fundamental signal bottlenecks and limited expressible logic state of the von Neumann architecture. Here, we demonstrate coordinated movement by a fully parallel-processable synaptic array with reduced control complexity. The synaptic array was fabricated by connecting eight ion-gel-based synaptic transistors to an ion gel dielectric. Parallel signal processing and multi-actuation control could be achieved by modulating the ionic movement. Through the integration of the synaptic array and a robotic hand, coordinated movement of the fingers was achieved with reduced control complexity by exploiting the advantages of parallel multiplexing and analog logic. The proposed synaptic control system provides considerable scope for the advancement of robotic control systems.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Dedos , Mano , Movimiento
4.
Adv Sci (Weinh) ; 10(3): e2205155, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36437048

RESUMEN

Neuromorphic engineering has emerged as a promising research field that can enable efficient and sophisticated signal transmission by mimicking the biological nervous system. This paper presents an artificial nervous system capable of facile self-regulation via multiplexed complementary signals. Based on the tunable nature of the Schottky barrier of a complementary signal integration circuit, a pair of complementary signals is successfully integrated to realize efficient signal transmission. As a proof of concept, a feedback-based blood glucose level control system is constructed by incorporating a glucose/insulin sensor, a complementary signal integration circuit, an artificial synapse, and an artificial neuron circuit. Certain amounts of glucose and insulin in the initial state are detected by each sensor and reflected as positive and negative amplitudes of the multiplexed presynaptic pulses, respectively. Subsequently, the pulses are converted to postsynaptic current, which triggered the injection of glucose or insulin in a way that confined the glucose level to a desirable range. The proposed artificial nervous system demonstrates the notable potential of practical advances in complementary control engineering.


Asunto(s)
Neuronas , Sinapsis , Neuronas/fisiología , Sinapsis/fisiología , Insulina , Glucosa
5.
Nat Commun ; 13(1): 6760, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351937

RESUMEN

The human light modulation response allows humans to perceive objects clearly by receiving the appropriate amount of light from the environment. This paper proposes a biomimetic ocular prosthesis system that mimics the human light modulation response capable of pupil and corneal reflections. First, photoinduced synaptic properties of the quantum dot embedded photonic synapse and its biosimilar signal transmission is confirmed. Subsequently, the pupillary light reflex is emulated by incorporating the quantum dot embedded photonic synapse, electrochromic device, and CMOS components. Moreover, a solenoid-based eyelid is connected to the pupillary light reflex system to emulate the corneal reflex. The proposed ocular prosthesis system represents a platform for biomimetic prosthesis that can accommodate an appropriate amount of stimulus by self-regulating the intensity of external stimuli.


Asunto(s)
Pupila , Reflejo Pupilar , Humanos , Pupila/fisiología , Reflejo Pupilar/fisiología , Ojo Artificial , Biomimética , Sistema Nervioso Autónomo
6.
Sci Adv ; 8(39): eabo3326, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36170364

RESUMEN

The advancement of electronic devices has enabled researchers to successfully emulate human synapses, thereby promoting the development of the research field of artificial synapse integrated soft robots. This paper proposes an artificial reciprocal inhibition system that can successfully emulate the human motor control mechanism through the integration of artificial synapses. The proposed system is composed of artificial synapses, load transistors, voltage/current amplifiers, and a soft actuator to demonstrate the muscle movement. The speed, range, and direction of the soft actuator movement can be precisely controlled via the preset input voltages with different amplitudes, numbers, and signs (positive or negative). The artificial reciprocal inhibition system can impart lifelike motion to soft robots and is a promising tool to enable the successful integration of soft robots or prostheses in a living body.

7.
Sci Adv ; 8(25): eabn1838, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35731885

RESUMEN

Multiplexing is essential for technologies that require processing of a large amount of information in real time. Here, we present an artificial synaptic multiplexing unit capable of realizing parallel multi-input control system. Ion gel was used as a dielectric layer of the artificial synaptic multiplexing unit because of its ionic property, allowing multigating for parallel input. A closed-loop control system that enables multi-input-based feedback for actuator bending control was realized by incorporating an ion gel-based artificial synaptic multiplexing unit, an actuator, and a bending angle sensor. The proposed multi-input control system could simultaneously process input and feedback signals, offering a breakthrough in industries in which the processing of vast amounts of streaming data is essential.

8.
Sci Adv ; 7(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33837079

RESUMEN

A stimulus-response system and conscious response enable humans to respond effectively to environmental changes and external stimuli. This paper presents an artificial stimulus-response system that is inspired by human conscious response and is capable of emulating it. The system is composed of an artificial visual receptor, artificial synapse, artificial neuron circuits, and actuator. By incorporating these artificial nervous components, a series of conscious response processes that markedly reduces response time as a result of learning from repeated stimuli are demonstrated. The proposed artificial stimulus-response system offers the promise of a new research field that would aid the development of artificial intelligence-based organs for patients with neurological disorders.

9.
Adv Mater ; 33(14): e2007782, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33644934

RESUMEN

The nature of repetitive learning and oblivion of memory enables humans to effectively manage vast amounts of memory by prioritizing information for long-term storage. Inspired by the memorization process of the human brain, an artificial synaptic array is presented, which mimics the biological memorization process by replicating Ebbinghaus' forgetting curve. To construct the artificial synaptic array, signal-transmitting access transistors and artificial synaptic memory transistors are designed using indium-gallium-zinc-oxide and poly(3-hexylthiophene), respectively. To secure the desired performance of the access transistor in regulating the input signal to the synaptic transistor, the content of gallium in the access transistor is optimized. In addition, the operation voltage of the synaptic transistor is carefully selected to achieve memory-state efficiency. Repetitive learning characterizing Ebbinghaus' oblivion curves is realized using an artificial synaptic array with optimized conditions for both transistor components. This successfully demonstrates a biologically plausible memorization process. Furthermore, selective attention for information prioritization in the human brain is mimicked by selectively applying repetitive learning to a synaptic transistor with a high memory state. The demonstrated biologically plausible artificial synaptic array provides great scope for advancement in bioinspired electronics.


Asunto(s)
Biomimética/instrumentación , Memoria , Sinapsis/fisiología
10.
Adv Mater ; 32(34): e2002653, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32643197

RESUMEN

Incorporation of various functions of a biological nervous system into electronic devices is an intriguing challenge in the realization of a human-like recognition and response system. Emerging artificial synaptic devices capable of processing electronic signals through neuromorphic functions operate such biomimetic systems similarly to biological nervous systems. Here, an oxygen-sensitive artificial synaptic device that simultaneously detects oxygen concentration and generates a synaptic signal is demonstrated. The device successfully achieves an interconversion between the excitatory and inhibitory modes of the synaptic current at various oxygen concentrations by virtue of an oxygen-sensitive trilayered organic double heterojunction. The oxygen-induced traps in the organic layer modulate the majority charge carrier from holes to electrons, and this modulation induces an interconversion between the excitatory and inhibitory modes according to the environmental oxygen condition. Finally, the proposed synaptic device is applied to the realization of a negative feedback system for regulation of oxygen homeostasis, which mimics the human autonomic nervous system. The oxygen-sensitive synaptic device proposed in this study is expected to open up new possibilities for the development of a biomimetic neural system that can respond appropriately to various environmental changes.


Asunto(s)
Sistema Nervioso Autónomo/metabolismo , Biomimética/instrumentación , Homeostasis , Oxígeno/análisis , Sinapsis/metabolismo , Retroalimentación , Humanos , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...