Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
ACS Cent Sci ; 10(6): 1231-1241, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38947196

RESUMEN

Mitochondrial thermogenesis is a process in which heat is generated by mitochondrial respiration. In living organisms, the thermogenic mechanisms that maintain body temperature have been studied extensively in fat cells with little knowledge on how mitochondrial heat may act beyond energy expenditure. Here, we highlight that the exothermic oxygen reduction reaction (ΔH f° = -286 kJ/mol) is the main source of the protonophore-induced mitochondrial thermogenesis, and this heat is conducted to other cellular organelles, including the nucleus. As a result, mitochondrial heat that reached the nucleus initiated the classical heat shock response, including the formation of nuclear stress granules and the localization of heat shock factor 1 (HSF1) to chromatin. Consequently, activated HSF1 increases the level of gene expression associated with the response to thermal stress in mammalian cells. Our results illustrate heat generated within the cells as a potential source of mitochondria-nucleus communication and expand our understanding of the biological functions of mitochondria in cell physiology.

2.
Adv Sci (Weinh) ; : e2400398, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958553

RESUMEN

The androgen receptor (AR) is an attractive target for treating prostate cancer, considering its role in the development and progression of localized and metastatic prostate cancer. The high global mortality burden of prostate cancer, despite medical treatments such as androgen deprivation or AR antagonist therapy, highlights the need to explore alternative strategies. One strategy involves the use of heterobifunctional degraders, also known as proteolysis-targeting chimeras, which are novel small-molecule therapeutics that inhibit amplified or mutated targets. Here, the study reports a novel cereblon-based AR degrader, UBX-390, and demonstrates its superior activity over established AR degraders, such as ARV-110 or ARCC-4, in prostate cancer cells under short- and long-term treatment conditions. UBX-390 suppresses chromatin binding and gene expression of AR and demonstrates substantial efficacy in the degradation of AR mutants in patients with treatment-resistant prostate cancer. UBX-390 is presented as an optimized AR degrader with remarkable potential for treating castration-resistant prostate cancer.

3.
Cell Death Differ ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789573

RESUMEN

Tumour necrosis factor receptor 1 (TNFR1) induces the nuclear factor kappa-B (NF-κB) signalling pathway and regulated cell death processes when TNF-α ligates with it. Although mechanisms regulating the downstream pathways of TNFR1 have been elucidated, the direct regulation of TNFR1 itself is not well known. In this study, we showed that the kinase domain of the epidermal growth factor receptor (EGFR) regulates NF-κB signalling and TNF-α-induced cell death by directly phosphorylating TNFR1 at Tyr 360 and 401 in its death domain. In contrast, EGFR inhibition by EGFR inhibitors, such as erlotinib and gefitinib, prevented their interaction. Once TNFR1 is phosphorylated, its death domain induces the suppression of the NF-κB pathways, complex II-mediated apoptosis, or necrosome-dependent necroptosis. Physiologically, in mouse models, EGF treatment mitigates TNF-α-dependent necroptotic skin inflammation induced by treatment with IAP and caspase inhibitors. Our study revealed a novel role for EGFR in directly regulating TNF-α-related pathways.

4.
Adv Sci (Weinh) ; 11(6): e2308537, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38110836

RESUMEN

Engrailed-1 (EN1) is a critical homeodomain transcription factor (TF) required for neuronal survival, and EN1 expression has been shown to promote aggressive forms of triple negative breast cancer. Here, it is reported that EN1 is aberrantly expressed in a subset of pancreatic ductal adenocarcinoma (PDA) patients with poor outcomes. EN1 predominantly repressed its target genes through direct binding to gene enhancers and promoters, implicating roles in the activation of MAPK pathways and the acquisition of mesenchymal cell properties. Gain- and loss-of-function experiments demonstrated that EN1 promoted PDA transformation and metastasis in vitro and in vivo. The findings nominate the targeting of EN1 and downstream pathways in aggressive PDA.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Pancreáticas/genética , Regulación de la Expresión Génica , Carcinoma Ductal Pancreático/genética
5.
Eur J Med Chem ; 265: 116052, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38134745

RESUMEN

The bromodomain and extraterminal domain (BET) family proteins recognize acetyl-lysine (Kac) at the histone tail through two tandem bromodomains, i.e., BD1 and BD2, to regulate gene expression. BET proteins are attractive therapeutic targets in cancer due to their involvement in oncogenic transcriptional activation, and bromodomains have defined Kac-binding pockets. Here, we present DW-71177, a potent BET inhibitor that selectively interacts with BD1 and exhibits strong antileukemic activity. X-ray crystallography, isothermal titration calorimetry, and molecular dynamic studies have revealed the robust and specific binding of DW-71177 to the Kac-binding pocket of BD1. DW-71177 effectively inhibits oncogenes comparable to the pan-BET inhibitor OTX-015, but with a milder impact on housekeeping genes. It efficiently blocks cancer-associated transcriptional changes by targeting genes that are highly enriched with BRD4 and histone acetylation marks, suggesting that BD1-selective targeting could be an effective and safe therapeutic strategy against leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Histonas , Proteínas Nucleares , Quinoxalinas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Proteínas que Contienen Bromodominio
6.
Sci Adv ; 9(47): eadi8454, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38000027

RESUMEN

Tissue regeneration after injury involves the dedifferentiation of somatic cells, a natural adaptive reprogramming that leads to the emergence of injury-responsive cells with fetal-like characteristics. However, there is no direct evidence that adaptive reprogramming involves a shared molecular mechanism with direct cellular reprogramming. Here, we induced dedifferentiation of intestinal epithelial cells using OSKM (Oct4, Sox2, Klf4, and c-Myc) in vivo. The OSKM-induced forced dedifferentiation showed similar molecular features of intestinal regeneration, including a transition from homeostatic cell types to injury-responsive-like cell types. These injury-responsive-like cells, sharing gene signatures of revival stem cells and atrophy-induced villus epithelial cells, actively assisted tissue regeneration following damage. In contrast to normal intestinal regeneration involving Ptgs2 induction, the OSKM promotes autonomous production of prostaglandin E2 via epithelial Ptgs1 expression. These results indicate prostaglandin synthesis is a common mechanism for intestinal regeneration but involves a different enzyme when partial reprogramming is applied to the intestinal epithelium.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo
7.
Mol Cancer ; 22(1): 177, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932786

RESUMEN

BACKGROUND: Although the development of BCR::ABL1 tyrosine kinase inhibitors (TKIs) rendered chronic myeloid leukemia (CML) a manageable condition, acquisition of drug resistance during blast phase (BP) progression remains a critical challenge. Here, we reposition FLT3, one of the most frequently mutated drivers of acute myeloid leukemia (AML), as a prognostic marker and therapeutic target of BP-CML. METHODS: We generated FLT3 expressing BCR::ABL1 TKI-resistant CML cells and enrolled phase-specific CML patient cohort to obtain unpaired and paired serial specimens and verify the role of FLT3 signaling in BP-CML patients. We performed multi-omics approaches in animal and patient studies to demonstrate the clinical feasibility of FLT3 as a viable target of BP-CML by establishing the (1) molecular mechanisms of FLT3-driven drug resistance, (2) diagnostic methods of FLT3 protein expression and localization, (3) association between FLT3 signaling and CML prognosis, and (4) therapeutic strategies to tackle FLT3+ CML patients. RESULTS: We reposition the significance of FLT3 in the acquisition of drug resistance in BP-CML, thereby, newly classify a FLT3+ BP-CML subgroup. Mechanistically, FLT3 expression in CML cells activated the FLT3-JAK-STAT3-TAZ-TEAD-CD36 signaling pathway, which conferred resistance to a wide range of BCR::ABL1 TKIs that was independent of recurrent BCR::ABL1 mutations. Notably, FLT3+ BP-CML patients had significantly less favorable prognosis than FLT3- patients. Remarkably, we demonstrate that repurposing FLT3 inhibitors combined with BCR::ABL1 targeted therapies or the single treatment with ponatinib alone can overcome drug resistance and promote BP-CML cell death in patient-derived FLT3+ BCR::ABL1 cells and mouse xenograft models. CONCLUSION: Here, we reposition FLT3 as a critical determinant of CML progression via FLT3-JAK-STAT3-TAZ-TEAD-CD36 signaling pathway that promotes TKI resistance and predicts worse prognosis in BP-CML patients. Our findings open novel therapeutic opportunities that exploit the undescribed link between distinct types of malignancies.


Asunto(s)
Crisis Blástica , Leucemia Mielógena Crónica BCR-ABL Positiva , Animales , Ratones , Humanos , Crisis Blástica/tratamiento farmacológico , Crisis Blástica/genética , Crisis Blástica/patología , Proteínas de Fusión bcr-abl/genética , Resistencia a Antineoplásicos/genética , Transducción de Señal , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Inhibidores de Proteínas Quinasas/farmacología , Tirosina Quinasa 3 Similar a fms/metabolismo
9.
Mol Ther Nucleic Acids ; 32: 637-649, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37207130

RESUMEN

Targeting aberrant epigenetic programs that drive tumorigenesis is a promising approach to cancer therapy. DNA-encoded library (DEL) screening is a core platform technology increasingly used to identify drugs that bind to protein targets. Here, we use DEL screening against bromodomain and extra-terminal motif (BET) proteins to identify inhibitors with new chemotypes, and successfully identified BBC1115 as a selective BET inhibitor. While BBC1115 does not structurally resemble OTX-015, a clinically active pan-BET inhibitor, our intensive biological characterization revealed that BBC1115 binds to BET proteins, including BRD4, and suppresses aberrant cell fate programs. Phenotypically, BBC1115-mediated BET inhibition impaired proliferation in acute myeloid leukemia, pancreatic, colorectal, and ovarian cancer cells in vitro. Moreover, intravenous administration of BBC1115 inhibited subcutaneous tumor xenograft growth with minimal toxicity and favorable pharmacokinetic properties in vivo. Since epigenetic regulations are ubiquitously distributed across normal and malignant cells, it will be critical to evaluate if BBC1115 affects normal cell function. Nonetheless, our study shows integrating DEL-based small-molecule compound screening and multi-step biological validation represents a reliable strategy to discover new chemotypes with selectivity, efficacy, and safety profiles for targeting proteins involved in epigenetic regulation in human malignancies.

10.
Gastroenterology ; 165(1): 133-148.e17, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36907523

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDA), with its highly metastatic propensity, is one of the most lethal subtypes of pancreatic cancer. Although recent large-scale transcriptomic studies have demonstrated that heterogeneous gene expressions play an essential role in determining molecular phenotypes of PDA, biological cues for and consequences of distinct transcriptional programs remain unclear. METHODS: We developed an experimental model that enforces the transition of PDA cells toward a basal-like subtype. We combined epigenome and transcriptome analyses with extensive in vitro and in vivo evaluations of tumorigenicity to demonstrate the validity of basal-like subtype differentiation in association with endothelial-like enhancer landscapes via TEA domain transcription factor 2 (TEAD2). Finally, we used loss-of-function experiments to investigate the importance of TEAD2 in regulating reprogrammed enhancer landscape and metastasis in basal-like PDA cells. RESULTS: Aggressive characteristics of the basal-like subtype are faithfully recapitulated in vitro and in vivo, demonstrating the physiological relevance of our model. Further, we showed that basal-like subtype PDA cells acquire a TEAD2-dependent proangiogenic enhancer landscape. Genetic and pharmacologic inhibitions of TEAD2 in basal-like subtype PDA cells impair their proangiogenic phenotypes in vitro and cancer progression in vivo. Last, we identify CD109 as a critical TEAD2 downstream mediator that maintains constitutively activated JAK-STAT signaling in basal-like PDA cells and tumors. CONCLUSIONS: Our findings implicate a TEAD2-CD109-JAK/STAT axis in the basal-like differentiated pancreatic cancer cells and as a potential therapeutic vulnerability.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Dominio TEA , Neoplasias Pancreáticas
11.
Mol Cancer ; 22(1): 63, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36991428

RESUMEN

BACKGROUND: Although metastasis is the foremost cause of cancer-related death, a specialized mechanism that reprograms anchorage dependency of solid tumor cells into circulating tumor cells (CTCs) during metastatic dissemination remains a critical area of challenge. METHODS: We analyzed blood cell-specific transcripts and selected key Adherent-to-Suspension Transition (AST) factors that are competent to reprogram anchorage dependency of adherent cells into suspension cells in an inducible and reversible manner. The mechanisms of AST were evaluated by a series of in vitro and in vivo assays. Paired samples of primary tumors, CTCs, and metastatic tumors were collected from breast cancer and melanoma mouse xenograft models and patients with de novo metastasis. Analyses of single-cell RNA sequencing (scRNA-seq) and tissue staining were performed to validate the role of AST factors in CTCs. Loss-of-function experiments were performed by shRNA knockdown, gene editing, and pharmacological inhibition to block metastasis and prolong survival. RESULTS: We discovered a biological phenomenon referred to as AST that reprograms adherent cells into suspension cells via defined hematopoietic transcriptional regulators, which are hijacked by solid tumor cells to disseminate into CTCs. Induction of AST in adherent cells 1) suppress global integrin/ECM gene expression via Hippo-YAP/TEAD inhibition to evoke spontaneous cell-matrix dissociation and 2) upregulate globin genes that prevent oxidative stress to acquire anoikis resistance, in the absence of lineage differentiation. During dissemination, we uncover the critical roles of AST factors in CTCs derived from patients with de novo metastasis and mouse models. Pharmacological blockade of AST factors via thalidomide derivatives in breast cancer and melanoma cells abrogated CTC formation and suppressed lung metastases without affecting the primary tumor growth. CONCLUSION: We demonstrate that suspension cells can directly arise from adherent cells by the addition of defined hematopoietic factors that confer metastatic traits. Furthermore, our findings expand the prevailing cancer treatment paradigm toward direct intervention within the metastatic spread of cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Melanoma , Células Neoplásicas Circulantes , Ratones , Animales , Humanos , Femenino , Línea Celular Tumoral , Células Neoplásicas Circulantes/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Melanoma/metabolismo , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia
12.
Adv Sci (Weinh) ; 9(32): e2204522, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36161785

RESUMEN

Receptor-interacting protein kinase 3 (RIPK3) is the primary regulator of necroptotic cell death. RIPK3 expression is often silenced in various cancer cells, which suggests that it may have tumor suppressor properties. However, the exact mechanism by which RIPK3 negatively regulates cancer development and progression remains unclear. This report indicates that RIPK3 acts as a potent regulator of the homeostatic proliferation of CD4+ CD8+ double-positive (DP) thymocytes. Abnormal proliferation of RIPK3-deficient DP thymocytes occurs independently of the well-known role for RIPK3 in necroptosis (upstream of MLKL activation), and is associated with an incidental thymic mass, likely thymic hyperplasia. In addition, Ripk3-null mice develop increased thymic tumor formation accompanied by reduced host survival in the context of an N-ethyl-N-nitrosourea (ENU)-induced tumor model. Moreover, RIPK3 deficiency in p53-null mice promotes thymic lymphoma development via upregulated extracellular signal-regulated kinase (ERK) signaling, which correlates with markedly reduced survival rates. Mechanistically, lymphocyte-specific protein tyrosine kinase (LCK) activates RIPK3, which in turn leads to increases in the phosphatase activity of protein phosphatase 2 (PP2A), thereby suppressing hyper-activation of ERK in DP thymocytes. Overall, these findings suggest that a RIPK3-PP2A-ERK signaling axis regulates DP thymocyte homeostasis and may provide a potential therapeutic target to improve thymic lymphoma therapies.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Linfoma , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Neoplasias del Timo , Animales , Ratones , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Linfoma/metabolismo , Ratones Noqueados , Proteína Fosfatasa 2/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Timocitos/metabolismo , Neoplasias del Timo/metabolismo
13.
Mol Cancer ; 20(1): 107, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419074

RESUMEN

BACKGROUND: Necroptosis is emerging as a new target for cancer immunotherapy as it is now recognized as a form of cell death that increases tumor immunogenicity, which would be especially helpful in treating immune-desert tumors. De novo synthesis of inflammatory proteins during necroptosis appears especially important in facilitating increased anti-tumor immune responses. While late-stage transcription mediated by NF-κB during cell death is believed to play a role in this process, it is otherwise unclear what cell signaling events initiate this transactivation of inflammatory genes. METHODS: We employed tandem-affinity purification linked to mass spectrometry (TAP-MS), in combination with the analysis of RNA-sequencing (RNA-Seq) datasets to identify the Tripartite Motif Protein 28 (TRIM28) as a candidate co-repressor. Comprehensive biochemical and molecular biology techniques were used to characterize the role of TRIM28 in RIPK3 activation-induced transcriptional and immunomodulatory events. The cell composition estimation module was used to evaluate the correlation between RIPK3/TRIM28 levels and CD8+ T cells or dendritic cells (DC) in all TCGA tumors. RESULTS: We identified TRIM28 as a co-repressor that regulates transcriptional activity during necroptosis. Activated RIPK3 phosphorylates TRIM28 on serine 473, inhibiting its chromatin binding activity, thereby contributing to the transactivation of NF-κB and other transcription factors, such as SOX9. This leads to elevated cytokine expression, which then potentiates immunoregulatory processes, such as DC maturation. The expression of RIPK3 has a significant positive association with the tumor-infiltrating immune cells populations in various tumor type, thereby activating anti-cancer responses. CONCLUSION: Our data suggest that RIPK3 activation-dependent derepression of TRIM28 in cancer cells leads to increased immunostimulatory cytokine production in the tumor microenvironment, which then contributes to robust cytotoxic anti-tumor immunity.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética , Microambiente Tumoral/genética , Animales , Sitios de Unión , Muerte Celular , Línea Celular , Citocinas/metabolismo , Humanos , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Necroptosis , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica , Transducción de Señal
14.
Cancer Lett ; 521: 294-307, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34416337

RESUMEN

The deregulation of polypeptide N-acetyl-galactosaminyltransferases (GALNTs) contributes to several cancers, but their roles in lung cancer remain unclear. In this study, we have identified a tumor-suppressing role of GALNT3 in lung cancer. We found that GALNT3 suppressed lung cancer development and progression in both xenograft and syngeneic mouse models. Specifically, GALNT3 suppressed lung cancer initiation by inhibiting the self-renewal of lung cancer cells. More importantly, GALNT3 attenuated lung cancer growth by preventing the creation of a favorable tumor microenvironment (TME), which was attributed to GALNT3's ability to inhibit myeloid-derived suppressor cell (MDSC) infiltration into tumor sites and subsequent angiogenesis. We also identified a GALNT3-regulated gene (GRG) signature and found that lung cancer patients whose tumors exhibit the GRG signature showed more favorable prognoses. Further investigation revealed that GALNT3 suppressed lung cancer cell self-renewal by reducing ß-catenin levels, which led to reduced expression of the downstream targets of the WNT pathway. In addition, GALNT3 inhibited MDSC infiltration into tumor sites by suppressing both the TNFR1-NFκB and cMET-pAKT pathways. Specifically, GALNT3 inhibited the nuclear localization of NFκB and the c-MET-induced phosphorylation of AKT. This then led to reduced production of CXCL1, a chemokine required for MDSC recruitment. Finally, we confirmed that the GALNT3-induced inhibition of the TNFR1-NFκB and cMET-pAKT pathways involved the O-GalNAcylation of the TNFR1 and cMET receptors. In summary, we have identified GALNT3 as the first GALNT member capable of suppressing lung cancer and uncovered a novel mechanism by which GALNT3 regulates the TME.

15.
Nucleic Acids Res ; 49(14): 8097-8109, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34320189

RESUMEN

During RNA polymerase II (RNA Pol II) transcription, the chromatin structure undergoes dynamic changes, including opening and closing of the nucleosome to enhance transcription elongation and fidelity. These changes are mediated by transcription elongation factors, including Spt6, the FACT complex, and the Set2-Rpd3S HDAC pathway. These factors not only contribute to RNA Pol II elongation, reset the repressive chromatin structures after RNA Pol II has passed, thereby inhibiting aberrant transcription initiation from the internal cryptic promoters within gene bodies. Notably, the internal cryptic promoters of infrequently transcribed genes are sensitive to such chromatin-based regulation but those of hyperactive genes are not. To determine why, the weak core promoters of genes that generate cryptic transcripts in cells lacking transcription elongation factors (e.g. STE11) were replaced with those from more active genes. Interestingly, as core promoter activity increased, activation of internal cryptic promoter dropped. This associated with loss of active histone modifications at the internal cryptic promoter. Moreover, environmental changes and transcription elongation factor mutations that downregulated the core promoters of highly active genes concomitantly increased their cryptic transcription. We therefore propose that the chromatin-based regulation of internal cryptic promoters is mediated by core promoter strength as well as transcription elongation factors.


Asunto(s)
Cromatina/genética , Chaperonas de Histonas/genética , Quinasas Quinasa Quinasa PAM/genética , Metiltransferasas/genética , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Cromatina/ultraestructura , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Proteínas del Grupo de Alta Movilidad/genética , Histona Desacetilasas/genética , Histonas/genética , Nucleosomas/genética , Nucleosomas/ultraestructura , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética
16.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298635

RESUMEN

2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) expression is upregulated in a variety of cancers and has been related to poor prognosis. However, despite this significance to cancer progression, the precise oncogenic mechanism of OGFOD1 is not understood. We demonstrated that OGFOD1 plays a role in enhancing the transcriptional activity of RNA polymerase II in breast cancer cells. OGFOD1 directly binds to the C-terminal domain of RNA polymerase II to alter phosphorylation status. The elimination of OGFOD1 resulted in decreased tumor development. Additionally, cell cycle-dependent kinase 7 and cell cycle-dependent kinase 9, critical enzymes for activating RNA polymerase II, phosphorylated serine 256 of OGFOD1, whereas a non-phosphorylated mutant OGFOD1 failed to enhance transcriptional activation and tumor growth. Consequently, OGFOD1 helps promote tumor growth by enhancing RNA polymerase II, whereas simultaneous phosphorylation of OGFOD1 by CDK enzymes is essential in stimulating RNA polymerase II-mediated transcription both in vitro and in vivo, and expression of target genes.

17.
NAR Cancer ; 3(2): zcab023, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34316710

RESUMEN

Cancer cells utilize epigenetic alterations to acquire autonomous capabilities for tumor maintenance. Here, we show that pancreatic ductal adenocarcinoma (PDA) cells utilize super-enhancers (SEs) to activate the transcription factor EVI1 (ecotropic viral integration site 1) gene, resulting in activation of an EVI1-dependent transcription program conferring PDA tumorigenesis. Our data indicate that SE is the vital cis-acting element to maintain aberrant EVI1 transcription in PDA cells. Consistent with disease progression and inferior survival outcomes of PDA patients, we further show that EVI1 upregulation is a major cause of aggressive tumor phenotypes. Specifically, EVI1 promotes anchorage-independent growth and motility in vitro and enhances tumor propagation in vivo. Mechanistically, EVI1-dependent activation of tumor-promoting gene expression programs through the stepwise configuration of the active enhancer chromatin attributes to these phenotypes. In sum, our findings support the premise that EVI1 is a crucial driver of oncogenic transcription programs in PDA cells. Further, we emphasize the instructive role of epigenetic aberrancy in establishing PDA tumorigenesis.

18.
Cancers (Basel) ; 13(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202157

RESUMEN

After decades-long efforts to diagnose and treat breast cancer, the management strategy that has proved most successful to date is molecular-subtype-specific inhibition of the hormone receptors and HER2 that are expressed by individual cancers. Melanoma-associated antigen (MAGE) proteins comprise >40 highly conserved members that contain the MAGE homology domain. They are often overexpressed in multiple cancers and contribute to cancer progression and metastasis. However, it remains unclear whether the biological activity arising from MAGE gene expression is associated with breast cancer subtypes. In this study, we analyzed the RNA-sequencing (RNA-seq) data of 70 breast cancer cell lines and found that MAGEA12 and MAGEA3 were highly expressed in a subset of these lines. Significantly, MAGEA12 and MAGEA3 expression levels were independent of hormone receptor expression levels but were closely associated with markers of active histone modifications. This indicates that overexpression of these genes is attributable to epigenetic deregulation. RNA-seq of MAGEA12-depleted cells was then used to identify 382 candidate targets of MAGEA12 that were downregulated by MAGEA12 depletion. Furthermore, our gain-of-function experiments showed that MAGEA12 overexpression promoted aggressive behaviors of malignant breast cancer cells, including enhancing their cell migration and invasion. These changes were associated with increased epigenetic deregulation of the MAGEA12 signature genes. Thus, MAGEA12 may play an important role in breast cancer malignancy. Taken together, our findings suggest that MAGEA12 could be a promising therapeutic target in breast cancer, and its overexpression and epigenetic changes could serve as subtype classification biomarkers.

19.
BMB Rep ; 54(4): 227-232, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33792534

RESUMEN

Callyspongiolide is a marine macrolide known to induce caspaseindependent cancer cell death. While its toxic effects have been known, the mechanism leading to cell death is yet to be identified. We report that Callyspongiolide R form at C-21 (cally2R) causes mitochondrial dysfunction by inhibiting mitochondrial complex I or II, leading to a disruption of mitochondrial membrane potential and a deprivation of cellular energy. Subsequently, we observed, using electron microscopy, a drastic formation of autophagosome and mitophagy. Supporting these data, LC3, an autophagosome marker, was shown to co-localize with LAMP2, a lysosomal protein, showing autolysosome formation. RNA sequencing results indicated the induction of hypoxia and blocking of EGF-dependent pathways, which could be caused by induction of autophagy. Furthermore, mTOR and AKT pathways preventing autophagy were repressed while AMPK was upregulated, supporting autophagosome progress. Finally, the combination of cally2R with known anti-cancer drugs, such as gefitinib, sorafenib, and rapamycin, led to synergistic cell death, implicating potential therapeutic applications of callyspongiolide for future treatments. [BMB Reports 2021; 54(4): 227-232].


Asunto(s)
Autofagia/efectos de los fármacos , Macrólidos/farmacología , Mitocondrias/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Células Tumorales Cultivadas
20.
PLoS One ; 15(8): e0236881, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32745107

RESUMEN

PIERCE1, p53 induced expression 1 in Rb null cells, is a novel p53 target involved in the DNA damage response and cell cycle in mice. These facts prompted us to study the function of PIERCE1 with respect to p53-associated pathophysiology of cancer in humans. Unexpectedly, PIERCE1 did not respond to overexpression and activation of p53 in humans. In this study, we swapped p53 protein expression in human and mouse cells to find the clue of this difference between species. Human p53 expression in mouse cells upregulated PIERCE1 expression, suggesting that p53-responsive elements on the PIERCE1 promoter are crucial, but not the p53 protein itself. Indeed, in silico analyses of PIERCE1 promoters revealed that p53-responsive elements identified in mice are not conserved in humans. Consistently, chromatin immunoprecipitation-sequencing (ChIP-seq) analyses confirmed p53 enrichment against the PIERCE1 promoter region in mice, not in human cells. To complement the p53 study in mice, further promoter analyses suggested that the human PIERCE1 promoter is more similar to guinea pigs, lemurs, and dogs than to rodents. Taken together, our results confirm the differential responsiveness of PIERCE1 expression to p53 due to species differences in PIERCE1 promoters. The results also show partial dissimilarity after p53 induction between mice and humans.


Asunto(s)
Proteínas de Ciclo Celular , Elementos de Respuesta/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Daño del ADN/genética , Humanos , Ratones , Regiones Promotoras Genéticas , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...