Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(4): e0231300, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32324754

RESUMEN

Incorporating expert knowledge at the time machine learning models are trained holds promise for producing models that are easier to interpret. The main objectives of this study were to use a feature engineering approach to incorporate clinical expert knowledge prior to applying machine learning techniques, and to assess the impact of the approach on model complexity and performance. Four machine learning models were trained to predict mortality with a severe asthma case study. Experiments to select fewer input features based on a discriminative score showed low to moderate precision for discovering clinically meaningful triplets, indicating that discriminative score alone cannot replace clinical input. When compared to baseline machine learning models, we found a decrease in model complexity with use of fewer features informed by discriminative score and filtering of laboratory features with clinical input. We also found a small difference in performance for the mortality prediction task when comparing baseline ML models to models that used filtered features. Encoding demographic and triplet information in ML models with filtered features appeared to show performance improvements from the baseline. These findings indicated that the use of filtered features may reduce model complexity, and with little impact on performance.


Asunto(s)
Asma/tratamiento farmacológico , Asma/mortalidad , Aprendizaje Automático , Conocimientos, Actitudes y Práctica en Salud , Humanos , Pronóstico
2.
AMIA Jt Summits Transl Sci Proc ; 2019: 145-152, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258966

RESUMEN

Electronic health records (EHR) are valuable to define phenotype selection algorithms used to identify cohorts ofpatients for sequencing or genome wide association studies (GWAS). To date, the electronic medical records and genomics (eMERGE) network institutions have developed and applied such algorithms to identify cohorts with associated DNA samples used to discover new genetic associations. For complex diseases, there are benefits to stratifying cohorts using comorbidities in order to identify their genetic determinants. The objective of this study was to: (a) characterize comorbidities in a range of phenotype-selected cohorts using the Johns Hopkins Adjusted Clinical Groups® (ACG®) System, (b) assess the frequency of important comorbidities in three commonly studied GWAS phenotypes, and (c) compare the comorbidity characterization of cases and controls. Our analysis demonstrates a framework to characterize comorbidities using the ACG system and identified differences in mean chronic condition count among GWAS cases and controls. Thus, we believe there is great potential to use the ACG system to characterize comorbidities among genetic cohorts selected based on EHR phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...