Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 9(11): 1121, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401820

RESUMEN

Traumatic brain injury (TBI) activates multiple neuronal cell death mechanisms, leading to post-traumatic neuronal loss and neurological deficits. TBI-induced cell cycle activation (CCA) in post-mitotic neurons causes regulated cell death involving cyclin-dependent kinase (CDK) activation and initiation of an E2F transcription factor-mediated pro-apoptotic program. Here we examine the mechanisms of CCA-dependent neuronal apoptosis in primary neurons in vitro and in mice exposed to controlled cortical impact (CCI). In contrast to our prior work demonstrating robust neuroprotective effects by CDK inhibitors after TBI, examination of neuronal apoptotic mechanisms in E2F1-/-/E2F2-/- or E2F2-/- transgenic mice following CCI suggests that E2F1 and/or E2F2 likely play only a modest role in neuronal cell loss after brain trauma. To elucidate more critical CCA molecular pathways involved in post-traumatic neuronal cell death, we investigated the neuroprotective effects and mechanisms of the potent CDK inhibitor CR8 in a DNA damage model of cell death in primary cortical neurons. CR8 treatment significantly reduced caspase activation and cleavage of caspase substrates, attenuating neuronal cell death. CR8 neuroprotective effects appeared to reflect inhibition of multiple pathways converging on the mitochondrion, including injury-induced elevation of pro-apoptotic Bcl-2 homology region 3 (BH3)-only proteins Puma and Noxa, thereby attenuating mitochondrial permeabilization and release of cytochrome c and AIF, with reduction of both caspase-dependent and -independent apoptosis. CR8 administration also limited injury-induced deficits in mitochondrial respiration. These neuroprotective effects may be explained by CR8-mediated inhibition of key upstream injury responses, including attenuation of c-Jun phosphorylation/activation as well as inhibition of p53 transactivation of BH3-only targets.


Asunto(s)
Lesiones Traumáticas del Encéfalo/prevención & control , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F2/genética , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Piridinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Caspasas/genética , Caspasas/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Daño del ADN , Factor de Transcripción E2F1/deficiencia , Factor de Transcripción E2F2/deficiencia , Regulación de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Dev Cell ; 40(6): 583-594.e6, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28350990

RESUMEN

Mitochondrial fission mediated by the GTPase dynamin-related protein 1 (Drp1) is an attractive drug target in numerous maladies that range from heart disease to neurodegenerative disorders. The compound mdivi-1 is widely reported to inhibit Drp1-dependent fission, elongate mitochondria, and mitigate brain injury. Here, we show that mdivi-1 reversibly inhibits mitochondrial complex I-dependent O2 consumption and reverse electron transfer-mediated reactive oxygen species (ROS) production at concentrations (e.g., 50 µM) used to target mitochondrial fission. Respiratory inhibition is rescued by bypassing complex I using yeast NADH dehydrogenase Ndi1. Unexpectedly, respiratory impairment by mdivi-1 occurs without mitochondrial elongation, is not mimicked by Drp1 deletion, and is observed in Drp1-deficient fibroblasts. In addition, mdivi-1 poorly inhibits recombinant Drp1 GTPase activity (Ki > 1.2 mM). Overall, these results suggest that mdivi-1 is not a specific Drp1 inhibitor. The ability of mdivi-1 to reversibly inhibit complex I and modify mitochondrial ROS production may contribute to effects observed in disease models.


Asunto(s)
Dinaminas/antagonistas & inhibidores , Complejo I de Transporte de Electrón/antagonistas & inhibidores , GTP Fosfohidrolasas/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Mitocondrias/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Quinazolinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Células COS , Respiración de la Célula/efectos de los fármacos , Chlorocebus aethiops , Dinaminas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , GTP Fosfohidrolasas/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , NAD/metabolismo , Neuronas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas Sprague-Dawley , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Biol Cell ; 27(2): 349-59, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26564796

RESUMEN

Ubiquitin- and proteasome-dependent outer mitochondrial membrane (OMM)-associated degradation (OMMAD) is critical for mitochondrial and cellular homeostasis. However, the scope and molecular mechanisms of the OMMAD pathways are still not well understood. We report that the OMM-associated E3 ubiquitin ligase MARCH5 controls dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and cell sensitivity to stress-induced apoptosis. MARCH5 knockout selectively inhibited ubiquitination and proteasomal degradation of MiD49, a mitochondrial receptor of Drp1, and consequently led to mitochondrial fragmentation. Mitochondrial fragmentation in MARCH5(-/-) cells was not associated with inhibition of mitochondrial fusion or bioenergetic defects, supporting the possibility that MARCH5 is a negative regulator of mitochondrial fission. Both MARCH5 re-expression and MiD49 knockout in MARCH5(-/-) cells reversed mitochondrial fragmentation and reduced sensitivity to stress-induced apoptosis. These findings and data showing MARCH5-dependent degradation of MiD49 upon stress support the possibility that MARCH5 regulation of MiD49 is a novel mechanism controlling mitochondrial fission and, consequently, the cellular response to stress.


Asunto(s)
Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis/fisiología , Dinaminas , GTP Fosfohidrolasas/metabolismo , Células HCT116 , Células HeLa , Homeostasis , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Estrés Fisiológico/fisiología , Ubiquitinación
4.
Free Radic Biol Med ; 86: 250-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26057935

RESUMEN

MitoSOX Red is a fluorescent probe used for the detection of mitochondrial reactive oxygen species by live cell imaging. The lipophilic, positively charged triphenylphosphonium moiety within MitoSOX concentrates the superoxide-sensitive dihydroethidium conjugate within the mitochondrial matrix. Here we investigated whether common MitoSOX imaging protocols influence mitochondrial bioenergetic function in primary rat cortical neurons and microglial cell lines. MitoSOX dose-dependently uncoupled neuronal respiration, whether present continuously in the assay medium or washed following a ten minute loading protocol. Concentrations of 5-10µM MitoSOX caused severe loss of ATP synthesis-linked respiration. Redistribution of MitoSOX to the cytoplasm and nucleus occurred concomitant to mitochondrial uncoupling. MitoSOX also dose-dependently decreased the maximal respiration rate and this impairment could not be rescued by delivery of a complex IV specific substrate, revealing complex IV inhibition. As in neurons, loading microglial cells with MitoSOX at low micromolar concentrations resulted in uncoupled mitochondria with reduced respiratory capacity whereas submicromolar MitoSOX had no adverse effects. The MitoSOX parent compound dihydroethidium also caused mitochondrial uncoupling and respiratory inhibition at low micromolar concentrations. However, these effects were abrogated by pre-incubating dihydroethidium with cation exchange beads to remove positively charged oxidation products, which would otherwise by sequestered by polarized mitochondria. Collectively, our results suggest that the matrix accumulation of MitoSOX or dihydroethidium oxidation products causes mitochondrial uncoupling and inhibition of complex IV. Because MitoSOX is inherently capable of causing severe mitochondrial dysfunction with the potential to alter superoxide production, its use therefore requires careful optimization in imaging protocols.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Mitocondrias/metabolismo , Neuronas/metabolismo , Fenantridinas/farmacología , Desacopladores/farmacología , Adenosina Difosfato/farmacología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Consumo de Oxígeno , Ratas
5.
J Cell Biol ; 208(1): 109-23, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25547155

RESUMEN

In addition to established membrane remodeling roles in various cellular locations, actin has recently emerged as a participant in mitochondrial fission. However, the underlying mechanisms of its participation remain largely unknown. We report that transient de novo F-actin assembly on the mitochondria occurs upon induction of mitochondrial fission and F-actin accumulates on the mitochondria without forming detectable submitochondrial foci. Impairing mitochondrial division through Drp1 knockout or inhibition prolonged the time of mitochondrial accumulation of F-actin and also led to abnormal mitochondrial accumulation of the actin regulatory factors cortactin, cofilin, and Arp2/3 complexes, suggesting that disassembly of mitochondrial F-actin depends on Drp1 activity. Furthermore, down-regulation of actin regulatory proteins led to elongation of mitochondria, associated with mitochondrial accumulation of Drp1. In addition, depletion of cortactin inhibited Mfn2 down-regulation- or FCCP-induced mitochondrial fragmentation. These data indicate that the dynamic assembly and disassembly of F-actin on the mitochondria participates in Drp1-mediated mitochondrial fission.


Asunto(s)
Actinas/metabolismo , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Cortactina/genética , Cortactina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Ratones , Dinámicas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Mitosis , Transporte de Proteínas , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección
6.
Methods Enzymol ; 547: 57-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25416352

RESUMEN

Technological improvements in microscopy and the development of mitochondria-specific imaging molecular tools have illuminated the dynamic rearrangements of these essential organelles. These rearrangements are mainly the result of two opposing processes: mitochondrial fusion and mitochondrial fission. Consistent with this, in addition to mitochondrial motility, these two processes are major factors determining the overall degree of continuity of the mitochondrial network, as well as the average size of mitochondria within the cell. In this chapter, we detail the use of advanced confocal microscopy and mitochondrial matrix-targeted photoactivatable green fluorescent protein (mito-PAGFP) for the investigation of mitochondrial dynamics. We focus on direct visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living mammalian cells. These assays were instrumental in important recent discoveries within the field of mitochondrial biology, including the role of mitochondrial fusion in the activation of mitochondrial steps in apoptosis, participation of Bcl-2 family proteins in mitochondrial morphogenesis, and stress-induced mitochondrial hyperfusion. We present some basic directions that should be helpful in designing mito-PAGFP-based experiments. Furthermore, since analyses of mitochondrial fusion using mito-PAGFP-based assays rely on time-lapse imaging, critical parameters of time-lapse microscopy and cell preparation are also discussed.


Asunto(s)
Proteínas Fluorescentes Verdes/análisis , Microscopía Confocal/métodos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Imagen de Lapso de Tiempo/métodos , Animales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mamíferos
7.
Methods Enzymol ; 547: 225-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25416361

RESUMEN

Mitochondrial reactive oxygen species (ROS) are implicated in signal transduction, inflammation, neurodegenerative disorders, and normal aging. Net ROS release by isolated brain mitochondria derived from a mixture of neurons and glia is readily quantified using fluorescent dyes. Measuring intracellular ROS in intact neurons or glia and assigning the origin to mitochondria are far more difficult. In recent years, the proton-motive force crucial to mitochondrial function has been exploited to target a variety of compounds to the highly negative mitochondrial matrix using the lipophilic triphenylphosphonium cation (TPP(+)) as a "delivery" conjugate. Among these, MitoSOX Red, also called mito-hydroethidine or mito-dihydroethidium, is prevalently used for mitochondrial ROS estimation. Although the TPP(+) moiety of MitoSOX enables the manyfold accumulation of ROS-sensitive hydroethidine in the mitochondrial matrix, the membrane potential sensitivity conferred by TPP(+) creates a daunting set of challenges not often considered in the application of this dye. This chapter provides recommendations and cautionary notes on the use of potentiometric fluorescent indicators for the approximation of mitochondrial ROS in live neurons, with principles that can be extrapolated to nonneuronal cell types. It is concluded that mitochondrial membrane potential changes render accurate estimation of mitochondrial ROS using MitoSOX difficult to impossible. Consequently, knowledge of mitochondrial membrane potential is essential to the application of potentiometric fluorophores for the measurement of intramitochondrial ROS.


Asunto(s)
Mitocondrias/metabolismo , Fenantridinas/análisis , Potenciometría/métodos , Especies Reactivas de Oxígeno/análisis , Animales , Etidio/análogos & derivados , Etidio/análisis , Etidio/química , Etidio/metabolismo , Fluorescencia , Colorantes Fluorescentes/metabolismo , Potencial de la Membrana Mitocondrial , Neuronas/metabolismo , Fenantridinas/química , Fenantridinas/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
8.
Mitochondrion ; 13(2): 119-24, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23333404

RESUMEN

Anti- and pro-apoptotic Bcl-2 family members regulate the mitochondrial phase of apoptotic cell death. The mitochondrial targeting mechanisms of Bcl-2 family proteins are tightly regulated. Known outer mitochondrial membrane targeting sequences include the C-terminal tail and central helical hairpin. Bcl-xL also localizes to the inner mitochondrial membrane, but these targeting sequences are unknown. Here we investigate the possibility that the N-terminus of Bcl-xL also contains mitochondrial targeting information. Amino acid residues 1-28 of Bcl-xL fused to EGFP are sufficient to target mitochondria. Although positive charges and helical propensity are required for targeting, similar to import sequences the N-terminus is not sufficient for efficient mitochondrial import.


Asunto(s)
Mitocondrias/metabolismo , Proteína bcl-X/metabolismo , Apoptosis , Fusión Artificial Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Humanos , Membranas Mitocondriales/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética
9.
Nat Neurosci ; 15(4): 574-80, 2012 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-22366758

RESUMEN

Transient global ischemia in rats induces delayed death of hippocampal CA1 neurons. Early events include caspase activation, cleavage of anti-death Bcl-2 family proteins and large mitochondrial channel activity. However, whether these events have a causal role in ischemia-induced neuronal death is unclear. We found that the Bcl-2 and Bcl-x(L) inhibitor ABT-737, which enhances death of tumor cells, protected rats against neuronal death in a clinically relevant model of brain ischemia. Bcl-x(L) is prominently expressed in adult neurons and can be cleaved by caspases to generate a pro-death fragment, ΔN-Bcl-x(L). We found that ABT-737 administered before or after ischemia inhibited ΔN-Bcl-x(L)-induced mitochondrial channel activity and neuronal death. To establish a causal role for ΔN-Bcl-x(L), we generated knock-in mice expressing a caspase-resistant form of Bcl-x(L). The knock-in mice exhibited markedly reduced mitochondrial channel activity and reduced vulnerability to ischemia-induced neuronal death. These findings suggest that truncated Bcl-x(L) could be a potentially important therapeutic target in ischemic brain injury.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , Proteína bcl-X/fisiología , Animales , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Isquemia Encefálica/prevención & control , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células Cultivadas , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Nitrofenoles/farmacología , Nitrofenoles/uso terapéutico , Técnicas de Cultivo de Órganos , Piperazinas/farmacología , Piperazinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Proteína bcl-X/biosíntesis , Proteína bcl-X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA