Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 8(1): 295, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750391

RESUMEN

Since the opening of Earth Observation (EO) archives (USGS/NASA Landsat and EC/ESA Sentinels), large collections of EO data are freely available, offering scientists new possibilities to better understand and quantify environmental changes. Fully exploiting these satellite EO data will require new approaches for their acquisition, management, distribution, and analysis. Given rapid environmental changes and the emergence of big data, innovative solutions are needed to support policy frameworks and related actions toward sustainable development. Here we present the Swiss Data Cube (SDC), unleashing the information power of Big Earth Data for monitoring the environment, providing Analysis Ready Data over the geographic extent of Switzerland since 1984, which is updated on a daily basis. Based on a cloud-computing platform allowing to access, visualize and analyse optical (Sentinel-2; Landsat 5, 7, 8) and radar (Sentinel-1) imagery, the SDC minimizes the time and knowledge required for environmental analyses, by offering consistent calibrated and spatially co-registered satellite observations. SDC derived analysis ready data supports generation of environmental information, allowing to inform a variety of environmental policies with unprecedented timeliness and quality.

4.
Nat Ecol Evol ; 5(7): 896-906, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33986541

RESUMEN

Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.


Asunto(s)
Benchmarking , Ecosistema , Biodiversidad
5.
Chimia (Aarau) ; 74(10): 755-757, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115553

RESUMEN

Switzerland Innovation, the Swiss innovation park with its five branches, is facilitating collaborations for companies, startups, and universities to find solutions to some of the world's most pressing challenges in the fields of health and the life sciences, in particular in the areas of chemistry, biochemistry, biomedicine, biotech, medtech and digital health. Together with its numerous and diverse partners, Switzerland Innovation creates an ecosystem for universities and research-based companies, accelerating the transformation of research results into marketable products and services.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...