Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 49(2): 377-385, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37452139

RESUMEN

Corticotropin-releasing factor (CRF) in the anterior bed nucleus of the stria terminalis (aBNST) is associated with chronic stress and avoidance behavior. However, CRF + BNST neurons project to reward- and motivation-related brain regions, suggesting a potential role in motivated behavior. We used chemogenetics to selectively activate CRF+ aBNST neurons in male and female CRF-ires-Cre mice during an effort-related choice task and a concurrent choice task. In both tasks, mice were given the option either to exert effort for high value rewards or to choose freely available low value rewards. Acute chemogenetic activation of CRF+ aBNST neurons reduced barrier climbing for a high value reward in the effort-related choice task in both males and females. Furthermore, acute chemogenetic activation of CRF+ aBNST neurons also reduced effortful lever pressing in high-performing males in the concurrent choice task. These data suggest a novel role for CRF+ aBNST neurons in effort-based decision and motivation behaviors.


Asunto(s)
Hormona Liberadora de Corticotropina , Núcleos Septales , Ratones , Masculino , Femenino , Animales , Hormona Liberadora de Corticotropina/metabolismo , Núcleos Septales/metabolismo , Motivación , Neuronas/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo
2.
Physiol Behav ; 275: 114431, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072036

RESUMEN

Intermittent fasting (IMF) is associated with many health benefits in animals and humans. Yet, little is known if an IMF diet affects mood and cognitive processing. We have previously identified that IMF in diet-induced obese males increases norepinephrine and dopamine content in the hypothalamus and increases arcuate neuropeptide Y (NPY) gene expression more than in ad libitum control males. This suggests that IMF may improve cognition through activation of the hindbrain norepinephrine neuronal network and reverse the age-dependent decline in NPY expression. Less is known about the association between anxiety and IMF. Although, in humans, IMF during Ramadan may alleviate anxiety. Here, we address the impact of IMF on anxiety-like behavior using the open field test, hippocampal-dependent memory using the Y-maze and spatial object recognition, and hippocampal-independent memory using novel object recognition in middle-aged male and female (12 mo) and aged male and female (18 mo) mice. Using ELISA, we determined norepinephrine (NE) content in the dorsal hippocampus (DH) and prefrontal cortex (PFC). We also investigated gene expression in the arcuate nucleus (ARC), the lateral hypothalamus (LH), and the locus coeruleus (LC). In IMF-treated females at both ages, we observed an improvement in spatial navigation although an impairment in spatial object orientation. IMF-treated females (12 mo) had a reduction and IMF-treated males (12 mo) displayed an improvement in novel object recognition memory. IMF-treated females (18 mo) exhibited anxiolytic-like behavior and increased locomotion. In the DH, IMF-treated males (12 mo) had a greater amount of NE content and IMF-treated males (18 mo) had a reduction. In the ARC, IMF-treated males (12 mo) exhibited an increase in Agrp and Npy and a decrease in Adr1a. In the ARC, IMF-treated males (18 mo) exhibited an increase in Npy and a decrease in Adr1a; females had a trending decrease in Cart. In the LH at 12 months, IMF-treated males had a decrease in Npy5r, Adr1a, and Adr1b; both males and females had a reduction in Npy1r. In the LH, IMF-treated females (18 mo) had a decrease in Hcrt. In the LC at both ages, mice largely exhibited sex effects. Our findings indicate that IMF produces alterations in mood, cognition, DH NE content, and ARC, LH, and LC gene expression depending on sex and age.


Asunto(s)
Ayuno Intermitente , Norepinefrina , Humanos , Ratones , Masculino , Femenino , Animales , Persona de Mediana Edad , Anciano , Norepinefrina/metabolismo , Neuropéptido Y/metabolismo , Hipotálamo/metabolismo , Hipocampo/metabolismo
3.
Psychoneuroendocrinology ; 161: 106920, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38128260

RESUMEN

Mood disorders, like major depressive disorder, can be precipitated by chronic stress and are more likely to be diagnosed in cisgender women than in cisgender men. This suggests that stress signaling in the brain is sexually dimorphic. We used a chronic variable mild stress paradigm to stress female and male mice for 6 weeks, followed by an assessment of avoidance behavior: the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. Additional cohorts were used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis (adBNST) and whole-cell patch clamp electrophysiology in NPY-expressing neurons of the adBNST to record stress-sensitive M-currents. Our results indicate that females are more affected by chronic stress as indicated by an increase in avoidance behaviors, but that this is also dependent on the estrous stage of the animals such that diestrus females show more avoidant behaviors regardless of stress treatment. Results also indicate that NPY-expressing neurons of the adBNST are not major mediators of chronic stress as the M-current was not affected by treatment. RNA-Sequencing data suggests sex differences in estrogen signaling, serotonin signaling, and orexin signaling in the adBNST. Our results indicate that chronic stress influences behavior in a sex- and estrous stage-dependent manner but NPY-expressing neurons in the BNST are not the mediators of these effects.


Asunto(s)
Trastorno Depresivo Mayor , Núcleos Septales , Humanos , Ratones , Femenino , Masculino , Animales , Núcleos Septales/fisiología , Trastorno Depresivo Mayor/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , ARN/metabolismo
4.
J Endocr Soc ; 8(1): bvad144, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38090229

RESUMEN

We have recently proposed experimental design guidelines and areas of study for preclinical rodent models of gender-affirming hormone therapy in neuroscience. These guidelines also apply to any field subject to the influences of gonadal steroid hormones, including metabolism and growth, cancer, and physiology. This perspective briefly describes our suggestions for these fields. Studying the effects of exogenous steroid hormones will have translational benefits for the community. We also discuss the need for equitable practices for cisgender scientists who wish to implement these guidelines and engage with the community. It is necessary that community-informed practices are implemented in preclinical research to maximize the benefit to transgender, nonbinary, and/or gender diverse (TNG) healthcare, which is currently in jeopardy in the United States, Europe, and across the globe.

5.
Am J Physiol Heart Circ Physiol ; 324(6): H856-H862, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37115629

RESUMEN

A clear, inclusive, and accurate approach to the collection of demographic information in clinical research and medical practice is critical to understanding the healthcare needs of the specific population. Inclusive demography constitutes appropriate and accurate characterization of an individual's sexual orientation and gender identity (SOGI) data. Appropriate demography fosters sense of inclusion and belonging for those belonging to medically marginalized communities such as the lesbian, gay, bisexual, transgender, queer, intersex, asexual, and Indigenous Two-Spirit (LGBTQIA2S+) communities and improves health outcomes. Acquiring inclusive demographics in healthcare research is needed for the following critical reasons. First, LGBTQIA2S+ individuals experience undue psychological harm when their identities are not appropriately captured in survey data, promoting further alienation of the LGBTQIA2S+ community in medicine and research. Second, LGBTQIA2S+ populations are disproportionately burdened by several major cardiovascular and cardiovascular-associated diseases, including hypertension and diabetes. Failure to include these populations, and accurately characterize their participation, in research leads to failure to identify associations between identities and disease, resulting in worse health outcomes. Furthermore, this lack of precision in current data for sex, gender, and sexual orientation may lead to inaccurate data for all populations, not just the LGBTQIA2S+ community. Finally, there are currently major political and social threats and attacks on the LGBTQIA2S+ community and, in particular, on transgender and gender-diverse individuals. Proper medical inclusion and advocacy for the LGBTQIA2S+ community by the medical community may help protect the community from further undue harm through creating sense of belonging and reductions in marginalization-related health inequities.


Asunto(s)
Identidad de Género , Minorías Sexuales y de Género , Humanos , Femenino , Masculino , Conducta Sexual , Encuestas y Cuestionarios , Inequidades en Salud
6.
Endocrinology ; 164(6)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37029960

RESUMEN

In menopausal and postmenopausal women, the risk for obesity, cardiovascular disease, osteoporosis, and gut dysbiosis are elevated by the depletion of 17ß-estradiol. A diet that is high in omega-6 polyunsaturated fatty acids (PUFAs), particularly linoleic acid (LA), and low in saturated fatty acids (SFAs) found in coconut oil and omega-3 PUFAs may worsen symptoms of estrogen deficiency. To investigate this hypothesis, ovariectomized C57BL/6J and transgenic fat-1 mice, which lower endogenous omega-6 polyunsaturated fatty acids, were treated with either a vehicle or estradiol benzoate (EB) and fed a high-fat diet with a high or low PUFA:SFA ratio for ~15 weeks. EB treatment reversed obesity, glucose intolerance, and bone loss in ovariectomized mice. fat-1 mice fed a 1% LA diet experienced reduced weight gain and adiposity, while those fed a 22.5% LA diet exhibited increased energy expenditure and activity in EB-treated ovariectomized mice. Coconut oil SFAs and omega-3 FAs helped protect against glucose intolerance without EB treatment. Improved insulin sensitivity was observed in wild-type and fat-1 mice fed 1% LA diet with EB treatment, while fat-1 mice fed 22.5% LA diet was protected against insulin resistance without EB treatment. The production of short-chain fatty acids by gut microbial microbiota was linked to omega-3 FAs production and improved energy homeostasis. These findings suggest that a balanced dietary fatty acid profile containing SFAs and a lower ratio of omega-6:omega-3 FAs is more effective in alleviating metabolic disorders during E2 deficiency.


Asunto(s)
Estradiol , Ácidos Grasos Omega-3 , Ácidos Grasos , Intolerancia a la Glucosa , Femenino , Animales , Ratones , Ovariectomía , Ratones Transgénicos , Ratones Endogámicos C57BL , Intolerancia a la Glucosa/prevención & control , Estradiol/farmacología , Aceite de Coco , Microbioma Gastrointestinal , Ácido Linoleico
7.
Biol Psychiatry ; 94(7): 543-549, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37003472

RESUMEN

Schizophrenia is a severe neuropsychiatric disorder with significant differences in the incidence and symptomology between cisgender men and women. In recent years, considerably more attention has been on the inclusion of sex and gender in schizophrenia research. However, the majority of this research has failed to consider gender outside of the socially constructed binary of men and women. As a result, little is known about schizophrenia in transgender and gender-nonconforming populations. In this review, we present evidence showing that transgender and gender-nonconforming individuals have elevated risk of developing schizophrenia, and we discuss minority stress theory and other potential factors that may contribute to this risk. The need for inclusion of transgender and gender-nonconforming communities in schizophrenia research is emphasized, alongside a discussion on considerations and challenges associated with this type of research. Finally, we offer specific strategies to make research on schizophrenia, and research on other neuropsychiatric disorders, more inclusive of those populations that do not fall within the socially constructed gender binary. If we are to succeed in the development of more personalized therapeutic approaches for all, a better understanding of the variability of the human brain is needed.


Asunto(s)
Esquizofrenia , Personas Transgénero , Masculino , Humanos , Femenino , Identidad de Género , Personas Transgénero/psicología
8.
Neuropsychopharmacology ; 48(6): 852-856, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928352

RESUMEN

Research regarding the mental health of the Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, Asexual, 2 Spirit (LGBTQIA2S+) community has been historically biased by individual and structural homophobia, biphobia, and transphobia, resulting in research that does not represent the best quality science. Furthermore, much of this research does not serve the best interests or priorities of LGBTQIA2S + communities, despite significant mental health disparities and great need for quality mental health research and treatments in these populations. Here, we will highlight how bias has resulted in missed opportunities for advancing understanding of mental health within LGBTQIA2S + communities. We cite up-to-date research on mental health disparities facing the LGBTQIA2S + community and targeted treatment strategies, as well as guidance from health care professionals. Importantly, research is discussed from both preclinical and clinical perspectives, providing common language and research priorities from a translational perspective. Given the rising tide of anti-transgender sentiment among certain political factions, we further emphasize and discuss the impact of historical and present day ciscentrism and structural transphobia in transgender mental health research, from both clinical and translational perspectives, with suggestions for future directions to improve the quality of this field. Finally, we address current best practices for treatment of mental health issues in this community. This approach provides an opportunity to dispel myths regarding the LGBTQIA2S + community as well as inform the scientific community of best practices to work with this community in an equitable manner. Thus, our approach ties preclinical and clinical research within the LGBTQIA2S + community.


Asunto(s)
Minorías Sexuales y de Género , Personas Transgénero , Transexualidad , Femenino , Humanos , Personas Transgénero/psicología , Conducta Sexual , Identidad de Género
9.
Steroids ; 195: 109228, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36990195

RESUMEN

Circulating 17ß-estradiol (E2) controls energy homeostasis and feeding behaviors primarily by its nuclear receptor, estrogen receptor (ER) α. As such, it is important to understand the role of ERα signaling in the neuroendocrine control of feeding. Our previous data indicated that the loss of ERα signaling through estrogen response elements (ERE) alters food intake in a female mouse model. Hence, we hypothesize that ERE-dependent ERα is necessary for typical feeding behaviors in mice. To test this hypothesis, we examined feeding behaviors on low-fat diet (LFD) and high-fat diet (HFD) in three mouse strains: total ERα knockout (KO), ERα knockin/knockout (KIKO), which lack a functional DNA-binding domain, and their wild type (WT) C57 littermates comparing intact males and females and ovariectomized females with or without E2 replacement. All feeding behaviors were recorded using the Biological Data Acquisition monitoring system (Research Diets). In intact male mice, KO and KIKO consumed less than WT mice on LFD and HFD, while in intact female mice, KIKO consumed less than WT and KO. These differences were primarily driven by shorter meal duration in the KO and KIKO. In ovariectomized females, E2-treated WT and KIKO consumed more LFD than KO driven in part by an increase in meal frequency and a decrease in meal size. On HFD, WT consumed more than KO with E2, again due to effects on meal size and frequency. Collectively, these suggest that both ERE-dependent and -independent ERα signaling are involved in feeding behaviors in female mice depending on the diet consumed.


Asunto(s)
Receptor alfa de Estrógeno , Receptores de Estrógenos , Ratones , Femenino , Masculino , Animales , Receptor alfa de Estrógeno/genética , Ratones Noqueados , Estrógenos , Conducta Alimentaria , Elementos de Respuesta
10.
Endocrinology ; 164(3)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36626144

RESUMEN

Obesity, cardiometabolic disease, cognitive decline, and osteoporosis are symptoms of postmenopause, which can be modeled using 4-vinylcyclohexene diepoxide (VCD)-treated mice to induce ovarian failure and estrogen deficiency combined with high-fat diet (HFD) feeding. The trend of replacing saturated fatty acids (SFAs), for example coconut oil, with seed oils that are high in polyunsaturated fatty acids, specifically linoleic acid (LA), may induce inflammation and gut dysbiosis, and worsen symptoms of estrogen deficiency. To investigate this hypothesis, vehicle (Veh)- or VCD-treated C57BL/6J mice were fed a HFD (45% kcal fat) with a high LA:SFA ratio (22.5%: 8%), referred to as the 22.5% LA diet, or a HFD with a low LA:SFA ratio (1%: 31%), referred to as 1% LA diet, for a period of 23 to 25 weeks. Compared with VCD-treated mice fed the 22.5% LA diet, VCD-treated mice fed the 1% LA diet showed lower weight gain and improved glucose tolerance. However, VCD-treated mice fed the 1% LA diet had higher blood pressure and showed evidence of spatial cognitive impairment. Mice fed the 1% LA or 22.5% LA diets showed gut microbial taxa changes that have been associated with a mix of both beneficial and unfavorable cognitive and metabolic phenotypes. Overall, these data suggest that consuming different types of dietary fat from a variety of sources, without overemphasis on any particular type, is the optimal approach for promoting metabolic health regardless of estrogen status.


Asunto(s)
Grasas de la Dieta , Ácidos Grasos , Ratones , Femenino , Animales , Aceite de Coco , Ratones Endogámicos C57BL , Grasas de la Dieta/efectos adversos , Dieta Alta en Grasa/efectos adversos , Ácido Linoleico , Homeostasis , Cognición , Estrógenos
11.
Biomolecules ; 12(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36291579

RESUMEN

The gut peptide, ghrelin, mediates energy homeostasis and reproduction by acting through its receptor, growth hormone secretagogue receptor (GHSR), expressed in hypothalamic neurons in the arcuate (ARC). We have shown 17ß-estradiol (E2) increases Ghsr expression in Kisspeptin/Neurokinin B/Dynorphin (KNDy) neurons, enhancing sensitivity to ghrelin. We hypothesized that E2-induced Ghsr expression augments KNDy sensitivity in a fasting state by elevating ghrelin to disrupt energy expenditure in females. We produced a Kiss1-GHSR knockout to determine the role of GHSR in ARC KNDy neurons. We found that changes in ARC gene expression with estradiol benzoate (EB) treatment were abrogated by the deletion of GHSR and ghrelin abolished these differences. We also observed changes in metabolism and fasting glucose levels. Additionally, knockouts were resistant to body weight gain on a high fat diet (HFD). Behaviorally, we found that knockouts on HFD exhibited reduced anxiety-like behavior. Furthermore, knockouts did not refeed to the same extent as controls after a 24 h fast. Finally, in response to cold stress, knockout females had elevated metabolic parameters compared to controls. These data indicate GHSR in Kiss1 neurons modulate ARC gene expression, metabolism, glucose homeostasis, behavior, and thermoregulation, illustrating a novel mechanism for E2 and ghrelin to control Kiss1 neurons.


Asunto(s)
Receptores de Ghrelina , Animales , Femenino , Ratones , Núcleo Arqueado del Hipotálamo/metabolismo , Dieta Alta en Grasa/efectos adversos , Dinorfinas/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Ghrelina/metabolismo , Glucosa/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo , Neuronas/metabolismo , Obesidad/genética , Obesidad/metabolismo , Receptores de Ghrelina/genética
12.
Front Behav Neurosci ; 16: 903782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35983475

RESUMEN

The sexually dimorphic bed nucleus of the stria terminalis (BNST) is comprised of several distinct regions, some of which act as a hub for stress-induced changes in neural circuitry and behavior. In rodents, the anterodorsal BNST is especially affected by chronic exposure to stress, which results in alterations to the corticotropin-releasing factor (CRF)-signaling pathway, including CRF receptors and upstream regulators. Stress increases cellular excitability in BNST CRF+ neurons by potentiating miniature excitatory postsynaptic current (mEPSC) amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential). Rodent anterodorsal and anterolateral BNST neurons are also critical regulators of behavior, including avoidance of aversive contexts and fear learning (especially that of sustained threats). These rodent behaviors are historically associated with anxiety. Furthermore, BNST is implicated in stress-related mood disorders, including anxiety and Post-Traumatic Stress Disorders in humans, and may be linked to sex differences found in mood disorders.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35863692

RESUMEN

Most studies attempting to address the health care needs of the millions of transgender, nonbinary, and/or gender-diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has a direct translational benefit for TNG individuals on gender-affirming hormone therapies (GAHTs). Despite this potential, endocrinological health care for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique health care needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHTs will greatly benefit the health care outcomes of TNG people.


Asunto(s)
Hormonas , Investigación Biomédica Traslacional , Humanos
16.
Biochem Pharmacol ; 199: 115015, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395240

RESUMEN

Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.


Asunto(s)
Disruptores Endocrinos , Adipogénesis , Tejido Adiposo , Preescolar , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Obesidad/etiología
17.
Biochem Pharmacol ; 199: 115012, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35393120

RESUMEN

Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.


Asunto(s)
Leptina , Obesidad , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología , Humanos , Insulina/metabolismo , Leptina/metabolismo , Obesidad/metabolismo
18.
J Toxicol Environ Health A ; 85(10): 397-413, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35045790

RESUMEN

Previously, organophosphate flame retardants (OPFRs) were found to produce intersecting disruptions of energy homeostasis using an adult mouse model of diet-induced obesity. Using the same mixture consisting of 1 mg/kg/day of each triphenyl phosphate, tricresyl phosphate, and tris(1,3-dichloro-2-propyl)phosphate, the current study aimed to identify the role of estrogen receptor alpha (ERα) in OPFR-induced disruption, utilizing ERα knockout (ERαKO) mice fed either a low-fat diet (LFD) or high-fat diet (HFD). Body weight and composition, food intake patterns, glucose and insulin tolerance, circulating peptide hormones, and expression of hypothalamic genes associated with energy homeostasis were measured. When fed HFD, no marked direct effects of OPFR were observed in mice lacking ERα, suggesting a role for ERα in generating previously reported wildtype (WT) findings. Male ERαKO mice fed LFD experienced decreased feeding efficiency and altered insulin tolerance, whereas their female counterparts displayed less fat mass and circulating ghrelin when exposed to OPFRs. These effects were not noted in the previous WT study, indicating that loss of ERα may sensitize animals fed LFD to alternate pathways of endocrine disruption by OFPRs. Collectively, these data demonstrate both direct and indirect actions of OPFRs on ERα-mediated pathways governing energy homeostasis and support a growing body of evidence urging concern for risk of human exposure.


Asunto(s)
Retardadores de Llama , Animales , Dieta Alta en Grasa/efectos adversos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Retardadores de Llama/toxicidad , Insulina , Masculino , Ratones , Obesidad/inducido químicamente , Obesidad/metabolismo , Organofosfatos
19.
J Toxicol Environ Health A ; 85(9): 381-396, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35000574

RESUMEN

Previously, organophosphate flame retardants (OPFRs) were demonstrated to dysregulate homeostatic parameters of energy regulation within an adult mouse model of diet-induced obesity. Using the same OPFR mixture consisting of 1 mg/kg/day of each triphenyl phosphate, tricresyl phosphate, and tris(1,3-dichloro-2-propyl)phosphate, the current study examined the role of peroxisome proliferator-activated receptor gamma (PPARγ) in OPFR-induced disruption by utilizing mice with brain-specific deletion of PPARγ (PPARγKO) fed either a low-fat diet (LFD) or high-fat diet (HFD). Body weight and composition, feeding behavior, glucose and insulin tolerance, circulating peptide hormones, and expression of hypothalamic genes associated with energy homeostasis were recorded. When fed HFD, the effects of OPFR on body weight and feeding behavior observed in the previous wild-type (WT) study were absent in mice lacking neuronal PPARγ. This posits PPARγ as an important target for eliciting OPFR disruption in a diet-induced obesity model. Interestingly, female PPARγKO mice, but not males, experienced many novel OPFR effects not noted in WT mice, including decreased fat mass, altered feeding behavior and efficiency, improved insulin sensitivity, elevated plasma ghrelin and hypothalamic expression of its receptor. Taken together, these data suggest both direct roles for PPARγ in OPFR disruption of obese mice and indirect sensitization of pathways alternative to PPARγ when neuronal expression is deleted.


Asunto(s)
Dieta Alta en Grasa , PPAR gamma , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Retardadores de Llama , Ratones , Obesidad/inducido químicamente , Obesidad/metabolismo , Organofosfatos , PPAR gamma/genética
20.
Horm Behav ; 136: 105084, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34749278

RESUMEN

Women are vulnerable to developing mental disorders that are associated with circulating estrogens. Estrogens, especially 17ß-estradiol (E2), have a wide array of effects on the brain, affecting many behavioral endpoints associated with mental illness. By using a total estrogen receptor (ER) α knockout (KO), an ERα knock in/knock out (KIKO) that lacks a functional DNA-binding domain, and wild type (WT) controls treated with either oil or E2, we evaluated ERα signaling, dependent and independent of the estrogen response element (ERE), on avoidance behavior, social interactions and memory, and palatable ingestive behavior using the open field test, the elevated plus maze, the light dark box, the 3-chamber test, and palatable feeding. We found that ERα does not mediate control of anxiety-like behaviors but rather yielded differences in locomotor activity. In evaluating social preference and social recognition memory, we observed that E2 may modulate these measures in KIKO females but not KO females, suggesting that ERE-independent signaling is likely involved in sociability. Lastly, observations of palatable (high-fat) food intake suggested an increase in palatable eating behavior in oil-treated KIKO females. Oil-treated KO females had a longer latency to food intake, indicative of an anhedonic phenotype compared to oil-treated WT and KIKO females. We have observed that social-related behaviors are potentially influenced by ERE-independent ERα signaling and hedonic food intake requires signaling of ERα.


Asunto(s)
Reacción de Prevención , Receptor alfa de Estrógeno , Conducta Alimentaria , Interacción Social , Animales , Conducta Animal , Estradiol/farmacología , Estradiol/fisiología , Receptor alfa de Estrógeno/genética , Estrógenos/farmacología , Femenino , Ratones , Ratones Noqueados , Elementos de Respuesta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...