Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 52(4): 609-21, 2006 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17114046

RESUMEN

Targeting of axons and dendrites to particular synaptic laminae is an important mechanism by which precise patterns of neuronal connectivity are established. Although axons target specific laminae during development, dendritic lamination has been thought to occur largely by pruning of inappropriately placed arbors. We discovered by in vivo time-lapse imaging that retinal ganglion cell (RGC) dendrites in zebrafish show growth patterns implicating dendritic targeting as a mechanism for contacting appropriate synaptic partners. Populations of RGCs labeled in transgenic animals establish distinct dendritic strata sequentially, predominantly from the inner to outer retina. Imaging individual cells over successive days confirmed that multistratified RGCs generate strata sequentially, each arbor elaborating within a specific lamina. Simultaneous imaging of RGCs and subpopulations of presynaptic amacrine interneurons revealed that RGC dendrites appear to target amacrine plexuses that had already laminated. Dendritic targeting of prepatterned afferents may thus be a novel mechanism for establishing proper synaptic connectivity.


Asunto(s)
Dendritas/ultraestructura , Terminales Presinápticos/ultraestructura , Retina/citología , Retina/embriología , Células Ganglionares de la Retina/citología , Pez Cebra/embriología , Vías Aferentes/citología , Vías Aferentes/embriología , Vías Aferentes/fisiología , Células Amacrinas/citología , Células Amacrinas/fisiología , Animales , Animales Modificados Genéticamente , Comunicación Celular/genética , Diferenciación Celular/fisiología , Forma de la Célula/fisiología , Dendritas/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Citometría de Imagen , Proteínas Luminiscentes/genética , Microscopía Confocal , Terminales Presinápticos/fisiología , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Factores de Tiempo , Pez Cebra/fisiología
2.
Development ; 132(13): 2955-67, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15930106

RESUMEN

The retinotectal projection is a premier model system for the investigation of molecular mechanisms that underlie axon pathfinding and map formation. Other important features, such as the laminar targeting of retinal axons, the control of axon fasciculation and the intrinsic organization of the tectal neuropil, have been less accessible to investigation. In order to visualize these processes in vivo, we generated a transgenic zebrafish line expressing membrane-targeted GFP under control of the brn3c promoter/enhancer. The GFP reporter labels a distinct subset of retinal ganglion cells (RGCs), which project mainly into one of the four retinorecipient layers of the tectum and into a small subset of the extratectal arborization fields. In this transgenic line, we carried out an ENU-mutagenesis screen by scoring live zebrafish larvae for anatomical phenotypes. Thirteen recessive mutations in 12 genes were discovered. In one mutant, ddl, the majority of RGCs fail to differentiate. Three of the mutations, vrt, late and tard, delay the orderly ingrowth of retinal axons into the tectum. Two alleles of drg disrupt the layer-specific targeting of retinal axons. Three genes, fuzz, beyo and brek, are required for confinement of the tectal neuropil. Fasciculation within the optic tract and adhesion within the tectal neuropil are regulated by vrt, coma, bluk, clew and blin. The mutated genes are predicted to encode molecules essential for building the intricate neural architecture of the visual system.


Asunto(s)
Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Retina/embriología , Células Ganglionares de la Retina/metabolismo , Colículos Superiores/embriología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Pruebas Genéticas/métodos , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Retina/anomalías , Colículos Superiores/anomalías , Factor de Transcripción Brn-3 , Factor de Transcripción Brn-3C , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nat Neurosci ; 7(12): 1329-36, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15516923

RESUMEN

The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in sdy. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in sdy mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.


Asunto(s)
Adaptación Ocular , Monofenol Monooxigenasa/fisiología , Red Nerviosa/enzimología , Estimulación Luminosa/métodos , Epitelio Pigmentado Ocular/enzimología , Adaptación Ocular/genética , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Monofenol Monooxigenasa/biosíntesis , Monofenol Monooxigenasa/genética , Mutación Missense , Pez Cebra
4.
Development ; 131(6): 1331-42, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14973290

RESUMEN

The inner plexiform layer (IPL) of the vertebrate retina comprises functionally specialized sublaminae, representing connections between bipolar, amacrine and ganglion cells with distinct visual functions. Developmental mechanisms that target neurites to the correct synaptic sublaminae are largely unknown. Using transgenic zebrafish expressing GFP in subsets of amacrine cells, we imaged IPL formation and sublamination in vivo and asked whether the major postsynaptic cells in this circuit, the ganglion cells, organize the presynaptic inputs. We found that in the lak/ath5 mutant retina, where ganglion cells are never born, formation of the IPL is delayed, with initial neurite outgrowth ectopically located and grossly disorganized. Over time, the majority of early neurite projection errors are corrected, and major ON and OFF sublaminae do form. However, focal regions of disarray persist where sublaminae do not form properly. Bipolar axons, which arrive later, are targeted correctly, except at places where amacrine stratification is disrupted. The lak mutant phenotype reveals that ganglion cells have a transient role organizing the earliest amacrine projections to the IPL. However, it also suggests that amacrine cells interact with each other during IPL formation; these interactions alone appear sufficient to form the IPL. Furthermore, our results suggest that amacrines may guide IPL sublamination by providing stratification cues for other cell types.


Asunto(s)
Retina/embriología , Células Ganglionares de la Retina , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Proteínas del Ojo , Genes Reporteros , Sustancias de Crecimiento/genética , Sustancias de Crecimiento/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
J Neurosci ; 23(9): 3726-34, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12736343

RESUMEN

The optic tectum is the largest visual center in most vertebrates and the main target for retinal ganglion cells (RGCs) conveying visual information from the eye to the brain. The retinotectal projection has served as an important model in many areas of developmental neuroscience. However, knowledge of the function of the tectum is limited. We began to address this issue using laser ablations and subsequent behavioral testing in zebrafish. We used a transgenic zebrafish line that expresses green-fluorescent protein in RGCs projecting to the tectum. By aiming a laser beam at the labeled retinal fibers demarcating the tectal neuropil, the larval tectum could be selectively destroyed. We tested whether tectum-ablated zebrafish larvae, when presented with large-field movements in their surroundings, displayed optokinetic responses (OKR) or optomotor responses (OMR), two distinct visuomotor behaviors that compensate for self-motion. Neither OKR nor OMR were found to be dependent on intact retinotectal connections. Also, visual acuity remained unaffected. Tectum ablation, however, slowed down the OKR by reducing the frequency of saccades but left tracking velocity, gain, and saccade amplitude unaffected. Removal of the tectum had no effect on the processing of second-order motion, to which zebrafish show both OKR and OMR, suggesting that the tectum is not an integral part of the circuit that extracts higher-order cues in the motion pathway.


Asunto(s)
Conducta Animal/fisiología , Movimientos Oculares/fisiología , Proteínas Luminiscentes/biosíntesis , Percepción de Movimiento/fisiología , Colículos Superiores/fisiología , Animales , Animales Modificados Genéticamente , Señales (Psicología) , Proteínas Fluorescentes Verdes , Larva , Terapia por Láser , Proteínas Luminiscentes/genética , Células Ganglionares de la Retina/fisiología , Movimientos Sacádicos/fisiología , Colículos Superiores/cirugía , Agudeza Visual/fisiología , Vías Visuales/fisiología , Pez Cebra
6.
Dev Biol ; 253(2): 279-90, 2003 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-12645931

RESUMEN

Despite the essential functions of the digestive system, much remains to be learned about the cellular and molecular mechanisms responsible for digestive organ morphogenesis and patterning. We introduce a novel zebrafish transgenic line, the gutGFP line, that expresses GFP throughout the digestive system, and use this tool to analyze the development of the liver. Our studies reveal two phases of liver morphogenesis: budding and growth. The budding period, which can be further subdivided into three stages, starts when hepatocytes first aggregate, shortly after 24 h postfertilization (hpf), and ends with the formation of a hepatic duct at 50 hpf. The growth phase immediately follows and is responsible for a dramatic alteration of liver size and shape. We also analyze gene expression in the developing liver and find a correlation between the expression of certain transcription factor genes and the morphologically defined stages of liver budding. To further expand our understanding of budding morphogenesis, we use loss-of-function analyses to investigate factors potentially involved in this process. It had been reported that no tail mutant embryos appear to lack a liver primordium, as assessed by gata6 expression. However, analysis of gutGFP embryos lacking Ntl show that the liver is in fact present. We also find that, in these embryos, the direction of liver budding does not correlate with the direction of intestinal looping, indicating that the left/right behavior of these tissues can be uncoupled. In addition, we use the cloche mutation to analyze the role of endothelial cells in liver morphogenesis, and find that in zebrafish, unlike what has been reported in mouse, endothelial cells do not appear to be necessary for the budding of this organ.


Asunto(s)
Hígado/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Tipificación del Cuerpo , Sistema Digestivo/embriología , Endotelio/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Oligodesoxirribonucleótidos/genética , Proteínas Recombinantes/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...