Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; : e0058224, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651867

RESUMEN

The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE: The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.

2.
Evol Appl ; 17(3): e13668, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38524683

RESUMEN

The increasing application of road deicing agents (e.g., NaCl) has caused widespread salinization of freshwater environments. Chronic exposure to toxic NaCl levels can impact freshwater biota at genome to ecosystem scales, yet the degree of harm caused by road salt pollution is likely to vary among habitats and populations. The background ion chemistry of freshwater environments may strongly impact NaCl toxicity, with greater harm occurring in ion-poor, soft water conditions. In addition, populations exposed to salinization may evolve increased NaCl tolerance. Notably, if organisms are adapted to the water chemistry of their natal environment, toxicity responses may also vary among populations in a given test medium. We examined the potential for this evolutionary and environmental context to interact in shaping NaCl toxicity with a pair of laboratory reciprocal transplant toxicity experiments, using natural populations of the water flea Daphnia ambigua collected from three lakes that vary in ion availability and composition. We observed a strong effect of the lake water environment on NaCl toxicity in both trials. NaCl caused a much greater decline in reproduction and r in lake water from a low-ion/calcium-poor environment (20 µS/cm specific conductance; 1.7 mg/L Ca2+) compared with water from both a Ca2+-rich lake (55 µS/cm; 7.2 mg/L Ca2+) and an ion-rich coastal lake (420 µS/cm; 3.4 mg/L Ca2+). Daphnia from this coastal lake were most robust to the effects of NaCl on reproduction and r. A significant interaction between the population and lake water environment shaped survival in both trials, suggesting that local adaptation to the test waters used may have contributed to toxicity responses. Our findings that the lake water environment, adaptation to that environment, and adaptation to a contaminant of interest may shape toxicity demonstrate the importance of considering environmental and biological complexity in mitigating pollution impacts.

3.
Ecol Evol ; 13(6): e10176, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37351479

RESUMEN

Freshwater environments vary widely in ion availability, owing to both natural and anthropogenic drivers. Field and laboratory work point to the importance of overall salinity, as well as cation depletion, in shaping the physiology, behavior, and ecology of freshwater taxa. Yet, we currently have a poor understanding of the degree to which populations may vary in response to ion availability. Using Daphnia collected from three lakes that differ greatly in salinity and calcium availability, we conducted a laboratory reciprocal transplant experiment to assess how animals representing these populations vary in fecundity, body size, and survival when reared in lake water from each environment. The lake water environment and population of origin strongly interacted to shape Daphnia growth and reproduction. Surprisingly, we found only modest evidence that lake water with abundant calcium (5.5 vs. 1.2-2.3 mg/L) increased Daphnia growth or reproduction. By contrast, water from a relatively ion-rich lake (400 µS/cm specific conductance) strongly boosted Daphnia fecundity over lower-ion lake water (20-50 µS/cm), especially for the population originating from the high-ion environment. Our results suggest that ion-poor conditions common in regions around the world may exert stress on freshwater organisms, even for populations inhabiting these environments. Meanwhile, moderate salt enrichment may not prove harmful but could even benefit freshwater taxa in these ion-poor regions. The context dependence of how and when lake water chemistry affects Daphnia and other freshwater taxa deserves greater attention, in both ion-depleted and ion-rich conditions. Daphnia are key members of lake food webs and serve as an important model for ecology, evolution, and toxicology research. Consideration of how lake water chemistry may influence how Daphnia populations respond to abiotic and biotic stress may improve the ability to evaluate and predict ecological and evolutionary dynamics in lakes of varying chemical composition.

4.
Am Nat ; 198(5): 563-575, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34648395

RESUMEN

AbstractSymbiotic interactions can shift along a mutualism-parasitism continuum. While there are many studies examining dynamics typically considered to be mutualistic that sometimes shift toward parasitism, little is known about conditions underlying shifts from parasitism toward mutualism. In lake populations, we observed that infection by a microsporidian gut symbiont sometimes conferred a reproductive advantage and other times a disadvantage to its Daphnia host. We hypothesized that the microsporidian might benefit its host by reducing infection by more virulent parasites, which attack via the gut. In a laboratory study using field-collected animals, we found that spores of a virulent fungal parasite were much less capable of penetrating the guts of Daphnia harboring the microsporidian gut symbiont. We predicted that this altered gut penetrability could cause differential impacts on host fitness depending on ecological context. Field survey data revealed that microsporidian-infected Daphnia hosts experienced a reproductive advantage when virulent parasites were common while resource scarcity led to a reproductive disadvantage, but only in lakes where virulent parasites were relatively rare. Our findings highlight the importance of considering multiparasite community context and resource availability in host-parasite studies and open the door for future research into conditions driving shifts along parasitism to mutualism gradients.


Asunto(s)
Parásitos , Simbiosis , Animales , Daphnia , Interacciones Huésped-Parásitos , Lagos , Reproducción
5.
Ecol Evol ; 11(15): 10446-10456, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367587

RESUMEN

Many organisms can reproduce both asexually and sexually. For cyclical parthenogens, periods of asexual reproduction are punctuated by bouts of sexual reproduction, and the shift from asexual to sexual reproduction has large impacts on fitness and population dynamics. We studied populations of Daphnia dentifera to determine the amount of investment in sexual reproduction as well as the factors associated with variation in investment in sex. To do so, we tracked host density, infections by nine different parasites, and sexual reproduction in 15 lake populations of D. dentifera for 3 years. Sexual reproduction was seasonal, with male and ephippial female production beginning as early as late September and generally increasing through November. However, there was substantial variation in the prevalence of sexual individuals across populations, with some populations remaining entirely asexual throughout the study period and others shifting almost entirely to sexual females and males. We found strong relationships between density, prevalence of infection, parasite species richness, and sexual reproduction in these populations. However, strong collinearity between density, parasitism, and sexual reproduction means that further work will be required to disentangle the causal mechanisms underlying these relationships.

6.
Artículo en Inglés | MEDLINE | ID: mdl-27920388

RESUMEN

Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.


Asunto(s)
Evolución Biológica , Enfermedades Transmisibles/parasitología , Interacciones Huésped-Parásitos , Enfermedades Transmisibles Emergentes/parasitología , Variación Genética , Actividades Humanas , Humanos , Densidad de Población
7.
Ecology ; 96(5): 1166-73, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26236831

RESUMEN

Many taxa, from plants to zooplankton, produce long-lasting dormant propagules capable of temporal dispersal. In some cases, propagules can persist for decades or even centuries before emerging from seed and egg banks. Despite impressive longevity, relatively little is known about how the chemical environment experienced before or during dormancy affects the fate and performance of individuals. This study examines the hatching rate and developmental success of Daphnia hatched from diapausing eggs isolated from sediments from four lakes that experienced varying levels of metal contamination. Two hundred seventy-three animals were hatched from lake sediments deposited over the past century. Hatching rate was negatively influenced by metal contamination and sediment age. There was a robust positive relationship between sediment metal concentrations and juvenile mortality in Daphnia hatching from those sediments. The negative effect of metals on Daphnia hatching and juvenile survival may stem from metal bioaccumulation, genetic effects, or reduced maternal investment in diapausing embryos. Regardless of the specific mechanism driving this trend, exposure to metals may impose strong selection on Daphnia diapausing egg banks.


Asunto(s)
Daphnia/efectos de los fármacos , Metales/toxicidad , Óvulo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Sedimentos Geológicos/química , Análisis de Componente Principal , Análisis de Regresión , Contaminación Química del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...