Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 15(8): 822-829, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285596

RESUMEN

Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Sistemas CRISPR-Cas , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
Angew Chem Int Ed Engl ; 58(2): 515-519, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30431220

RESUMEN

Histone lysine demethylases (KDMs) are involved in the dynamic regulation of gene expression and they play a critical role in several biological processes. Achieving selectivity over the different KDMs has been a major challenge for KDM inhibitor development. Here we report potent and selective KDM5 covalent inhibitors designed to target cysteine residues only present in the KDM5 sub-family. The covalent binding to the targeted proteins was confirmed by MS and time-dependent inhibition. Additional competition assays show that compounds were non 2-OG competitive. Target engagement and ChIP-seq analysis showed that the compounds inhibited the KDM5 members in cells at nano- to micromolar levels and induce a global increase of the H3K4me3 mark at transcriptional start sites.

3.
Angew Chem Int Ed Engl ; 57(50): 16302-16307, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30288907

RESUMEN

YEATS domain (YD) containing proteins are an emerging class of epigenetic targets in drug discovery. Dysregulation of these modified lysine-binding proteins has been linked to the onset and progression of cancers. We herein report the discovery and characterisation of the first small-molecule chemical probe, SGC-iMLLT, for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). SGC-iMLLT is a potent and selective inhibitor of MLLT1/3-histone interactions. Excellent selectivity over other human YD proteins (YEATS2/4) and bromodomains was observed. Furthermore, our probe displays cellular target engagement of MLLT1 and MLLT3. The first small-molecule X-ray co-crystal structures with the MLLT1 YD are also reported. This first-in-class probe molecule can be used to understand MLLT1/3-associated biology and the therapeutic potential of small-molecule YD inhibitors.


Asunto(s)
Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Bibliotecas de Moléculas Pequeñas/química , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Cristalografía por Rayos X , Histonas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Dominios Proteicos , Mapas de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/metabolismo
4.
Angew Chem Int Ed Engl ; 56(3): 827-831, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-27966810

RESUMEN

The p300/CBP-associated factor (PCAF) and related GCN5 bromodomain-containing lysine acetyl transferases are members of subfamily I of the bromodomain phylogenetic tree. Iterative cycles of rational inhibitor design and biophysical characterization led to the discovery of the triazolopthalazine-based L-45 (dubbed L-Moses) as the first potent, selective, and cell-active PCAF bromodomain (Brd) inhibitor. Synthesis from readily available (1R,2S)-(-)-norephedrine furnished L-45 in enantiopure form. L-45 was shown to disrupt PCAF-Brd histone H3.3 interaction in cells using a nanoBRET assay, and a co-crystal structure of L-45 with the homologous Brd PfGCN5 from Plasmodium falciparum rationalizes the high selectivity for PCAF and GCN5 bromodomains. Compound L-45 shows no observable cytotoxicity in peripheral blood mononuclear cells (PBMC), good cell-permeability, and metabolic stability in human and mouse liver microsomes, supporting its potential for in vivo use.


Asunto(s)
Compuestos Azo/farmacología , Descubrimiento de Drogas , Hidralazina/farmacología , Sondas Moleculares/farmacología , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Compuestos Azo/síntesis química , Compuestos Azo/química , Relación Dosis-Respuesta a Droga , Hidralazina/síntesis química , Hidralazina/química , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Estructura Molecular , Relación Estructura-Actividad
5.
Angew Chem Int Ed Engl ; 54(21): 6217-21, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25864491

RESUMEN

The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure-activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion.


Asunto(s)
Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Descubrimiento de Drogas , Lactamas/química , Lactamas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Modelos Moleculares , Factores de Transcripción/química , Factores de Transcripción/metabolismo
6.
Angew Chem Weinheim Bergstr Ger ; 127(21): 6315-6319, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27346896

RESUMEN

The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure-activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion.

7.
Artículo en Inglés | MEDLINE | ID: mdl-25097667

RESUMEN

BACKGROUND: Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells. RESULTS: Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets, demonstrating the specificity of the method. CONCLUSIONS: Viable FRAP assays were established for 11 representative bromodomain-containing proteins that broadly cover the bromodomain phylogenetic tree. Addition of SAHA can overcome weak binding to chromatin, and the use of tandem bromodomain constructs can eliminate masking effects of other chromatin binding domains. Together, these results demonstrate that FRAP assays offer a potentially pan-bromodomain method for generating cell-based assays, allowing the testing of compounds with respect to cell permeability, on-target efficacy and selectivity.

8.
J Am Chem Soc ; 136(26): 9308-19, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24946055

RESUMEN

Small-molecule inhibitors that target bromodomains outside of the bromodomain and extra-terminal (BET) sub-family are lacking. Here, we describe highly potent and selective ligands for the bromodomain module of the human lysine acetyl transferase CBP/p300, developed from a series of 5-isoxazolyl-benzimidazoles. Our starting point was a fragment hit, which was optimized into a more potent and selective lead using parallel synthesis employing Suzuki couplings, benzimidazole-forming reactions, and reductive aminations. The selectivity of the lead compound against other bromodomain family members was investigated using a thermal stability assay, which revealed some inhibition of the structurally related BET family members. To address the BET selectivity issue, X-ray crystal structures of the lead compound bound to the CREB binding protein (CBP) and the first bromodomain of BRD4 (BRD4(1)) were used to guide the design of more selective compounds. The crystal structures obtained revealed two distinct binding modes. By varying the aryl substitution pattern and developing conformationally constrained analogues, selectivity for CBP over BRD4(1) was increased. The optimized compound is highly potent (Kd = 21 nM) and selective, displaying 40-fold selectivity over BRD4(1). Cellular activity was demonstrated using fluorescence recovery after photo-bleaching (FRAP) and a p53 reporter assay. The optimized compounds are cell-active and have nanomolar affinity for CBP/p300; therefore, they should be useful in studies investigating the biological roles of CBP and p300 and to validate the CBP and p300 bromodomains as therapeutic targets.


Asunto(s)
Proteína de Unión a CREB/química , Proteína p300 Asociada a E1A/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Sitios de Unión , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Técnicas de Química Sintética , Cristalografía por Rayos X , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Proteína p300 Asociada a E1A/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Genes p53 , Células HeLa/efectos de los fármacos , Humanos , Indoles/química , Isoxazoles/química , Ligandos , Microsomas Hepáticos/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Estructura Terciaria de Proteína , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad
9.
Angew Chem Int Ed Engl ; 53(24): 6126-30, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24821300

RESUMEN

The benzoxazinone and dihydroquinoxalinone fragments were employed as novel acetyl lysine mimics in the development of CREBBP bromodomain ligands. While the benzoxazinone series showed low affinity for the CREBBP bromodomain, expansion of the dihydroquinoxalinone series resulted in the first potent inhibitors of a bromodomain outside the BET family. Structural and computational studies reveal that an internal hydrogen bond stabilizes the protein-bound conformation of the dihydroquinoxalinone series. The side chain of this series binds in an induced-fit pocket forming a cation-π interaction with R1173 of CREBBP. The most potent compound inhibits binding of CREBBP to chromatin in U2OS cells.


Asunto(s)
Proteína de Unión a CREB/genética , Cationes/química , Epigenómica/métodos , Ligandos , Modelos Moleculares , Unión Proteica
10.
Biofabrication ; 6(3): 035003, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24722371

RESUMEN

Electrospinning is a common technique used to fabricate fibrous scaffolds for tissue engineering applications. There is now growing interest in assessing the ability of collector plate design to influence the patterning of the fibres during the electrospinning process. In this study, we investigate a novel method to generate hybrid electrospun scaffolds consisting of both random fibres and a defined three-dimensional (3D) micro-topography at the surface, using patterned resin formers produced by rapid prototyping (RP). Poly(D,L-lactide-co-glycolide) was electrospun onto the engineered RP surfaces and the ability of these formers to influence microfibre patterning in the resulting scaffolds visualized by scanning electron microscopy. Electrospun scaffolds with patterns mirroring the microstructures of the formers were successfully fabricated. The effect of the resulting fibre patterns and 3D geometries on mammalian cell adhesion and proliferation was investigated by seeding enhanced green fluorescent protein labelled 3T3 fibroblasts onto the scaffolds. Following 24 h and four days of culture, the seeded scaffolds were visually assessed by confocal macro- and microscopy. The patterning of the fibres guided initial cell adhesion to the scaffold with subsequent proliferation over the geometry resulting in the cells being held in a 3D micro-topography. Such patterning could be designed to replicate a specific in vivo structure; we use the dermal papillae as an exemplar here. In conclusion, a novel, versatile and scalable method to produce hybrid electrospun scaffolds has been developed. The 3D directional cues of the patterned fibres have been shown to influence cell behaviour and could be used to culture cells within a similar 3D micro-topography as experienced in vivo.


Asunto(s)
Técnicas Electroquímicas/métodos , Ácido Láctico/síntesis química , Ácido Poliglicólico/síntesis química , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Animales , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Fibroblastos/citología , Ácido Láctico/química , Ratones , Células 3T3 NIH , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
11.
J Biomed Mater Res A ; 102(11): 3872-82, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24339408

RESUMEN

Tissue engineering strategies can be applied to enhancing osseous integration of soft tissue grafts during ligament reconstruction. Ligament rupture results in a hemarthrosis, an acute intra-articular bleed rich in osteogenic human mesenchymal stem cells (hMSCs). With the aim of identifying an appropriate biomaterial with which to combine hemarthrosis fluid-derived hMSCs (HF-hMSCs) for therapeutic application, this work has investigated the biocompatibility of microparticles manufactured from two forms of poly(D,L-lactic-co-glycolic acid) (PLGA), one synthesized with equal monomeric ratios of lactic acid to glycolic acid (PLGA 50:50) and the other with a higher proportion of lactic acid (PLGA 85:15) which confers a longer biodegradation time. The surfaces of both types of microparticles were functionalized by plasma polymerization with allylamine to increase hydrophilicity and promote cell attachment. HF-hMSCs attached to and spread along the surface of both forms of PLGA microparticle. The osteogenic response of HF-hMSCs was enhanced when cultured with PLGA compared with control cultures differentiated on tissue culture plastic and this was independent of the type of polymer used. We have demonstrated that surface engineered PLGA microparticles are an appropriate biomaterial for combining with HF-hMSCs and the selection of PLGA is relevant only when considering the biodegradation time for each biomedical application.


Asunto(s)
Diferenciación Celular , Ácido Láctico/química , Ensayo de Materiales , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Ácido Poliglicólico/química , Línea Celular , Humanos , Células Madre Mesenquimatosas/citología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Propiedades de Superficie
12.
J Pharm Pharmacol ; 64(6): 821-31, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22571260

RESUMEN

OBJECTIVES: The purpose of this study was to identify a cell source, scaffold substrate and culture environment suitable for use in engineering an in-vitro model of rodent cartilage. METHODS: The chondrogenic activity and stability of cells isolated at Day 18 of gestation was assessed under normoxia and hypoxia using a cytokine stimulation assay and gene expression analysis. The ability of the selected cells seeded in fibrous electrospun scaffolds to form cartilaginous tissue during longterm static and dynamic culture was assessed using immunocytochemistry and biochemical analysis. KEY FINDINGS: Rodent fetal chondrocytes appear to have enhanced phenotypic stability compared with other cell sources. Following 16 weeks under static culture, the engineered constructs were found to have greater cellularity and collagen content that native rodent cartilage. CONCLUSIONS: A cell source, scaffold and culture environment have been identified that support the generation of in-vitro rodent cartilage. In future work, cytokine treatment of the engineered tissues will take place to generate in-vitro osteoarthritis models.


Asunto(s)
Cartílago/citología , Condrocitos/citología , Colágeno/metabolismo , Ratas/embriología , Ingeniería de Tejidos/métodos , Animales , Cartílago/metabolismo , Bovinos , Células Cultivadas , Condrocitos/metabolismo , Citocinas/farmacología , Investigación Fetal , Expresión Génica , Edad Gestacional , Hipoxia , Modelos Biológicos , Oxígeno/farmacología , Fenotipo , Ratas Wistar , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...