Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Aging ; 53: 112-121, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28254590

RESUMEN

Aging is accompanied by increased neuroinflammation, synaptic dysfunction, and cognitive deficits both in rodents and humans, yet the onset and progression of these deficits throughout the life span remain unknown. These aging-related deficits affect the quality of life and present challenges to our aging society. Here, we defined age-dependent and progressive impairments of synaptic and cognitive functions and showed that reducing astrocyte-related neuroinflammation through anti-inflammatory drug treatment in aged mice reverses these events. By comparing young (3 months), middle-aged (18 months), aged (24 months), and advanced-aged wild-type mice (30 months), we found that the levels of an astrocytic marker, glial fibrillary acidic protein, progressively increased after 18 months of age, which preceded the decreases of the synaptic marker PSD-95. Hippocampal long-term potentiation was also suppressed in an age-dependent manner, where significant deficits were observed after 24 months of age. Fear conditioning tests demonstrated that associative memory in the context and cued conditions was decreased starting at the ages of 18 and 30 months, respectively. When the mice were tested on hidden platform water maze, spatial learning memory was significantly impaired after 24 months of age. Importantly, subacute treatment with the anti-inflammatory drug ibuprofen suppressed astrocyte activation and restored synaptic plasticity and memory function in advanced-aged mice. These results support the critical contribution of aging-related inflammatory responses to hippocampal-dependent cognitive function and synaptic plasticity, in particular during advanced aging. Our findings provide strong evidence that suppression of neuroinflammation could be a promising treatment strategy to preserve cognition during aging.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Cognición/efectos de los fármacos , Cognición/fisiología , Envejecimiento Cognitivo/fisiología , Envejecimiento Cognitivo/psicología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/fisiopatología , Ibuprofeno/farmacología , Ibuprofeno/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Animales , Astrocitos/patología , Biomarcadores/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/fisiopatología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/fisiopatología , Potenciación a Largo Plazo , Masculino , Ratones , Terapia Molecular Dirigida , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología
2.
Eur J Neurosci ; 41(10): 1372-80, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25864922

RESUMEN

The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in synaptic function, including decreased long-term potentiation, reduced dendritic spine density, and deficits in learning and memory, making it an attractive model in which to examine the ability of Reelin to recover synaptic function and cognitive deficits. In this study, we investigated the effects of Reelin administration on synaptic plasticity and cognitive function in a mouse model of AS and demonstrated that bilateral, intraventricular injections of Reelin recover synaptic function and corresponding hippocampus-dependent associative and spatial learning and memory. Additionally, we describe alteration of the Reelin profile in tissue from both the AS mouse and post-mortem human brain.


Asunto(s)
Síndrome de Angelman/fisiopatología , Síndrome de Angelman/psicología , Moléculas de Adhesión Celular Neuronal/administración & dosificación , Proteínas de la Matriz Extracelular/administración & dosificación , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Proteínas del Tejido Nervioso/administración & dosificación , Serina Endopeptidasas/administración & dosificación , Síndrome de Angelman/tratamiento farmacológico , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Corteza Cerebral/metabolismo , Espinas Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Células HEK293 , Hipocampo/fisiopatología , Hipocampo/ultraestructura , Humanos , Inyecciones Intraventriculares , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
3.
J Psychopharmacol ; 27(4): 386-95, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23104248

RESUMEN

The lipoprotein receptor ligand Reelin is important for the processes of normal synaptic plasticity, dendritic morphogenesis, and learning and memory. Heterozygous reeler mice (HRM) show many neuroanatomical, biochemical, and behavioral features that are associated with schizophrenia. HRM show subtle morphological defects including reductions in dendritic spine density, altered synaptic plasticity and behavioral deficits in associative learning and memory and pre-pulse inhibition. The present studies test the hypothesis that in vivo elevation of Reelin levels can rescue synaptic and behavioral phenotypes associated with HRM. We demonstrate that a single in vivo injection of Reelin increases GAD67 expression and alters dendritic spine morphology. In parallel we observed enhancement of hippocampal synaptic function and associative learning and memory. Reelin supplementation also increases pre-pulse inhibition. These results suggest that characteristics of HRM, similar to those observed in schizophrenia, are sensitive to Reelin levels and can be modified with Reelin supplementation in male and female adults.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Trastornos Neurológicos de la Marcha/metabolismo , Discapacidades para el Aprendizaje/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Esquizofrenia/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Cruzamientos Genéticos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Proteínas de la Matriz Extracelular/genética , Femenino , Trastornos Neurológicos de la Marcha/etiología , Glutamato Descarboxilasa/metabolismo , Heterocigoto , Hipocampo/metabolismo , Aprendizaje , Discapacidades para el Aprendizaje/etiología , Masculino , Ratones , Ratones Mutantes Neurológicos , Proteínas del Tejido Nervioso/genética , Inhibición Neural , Neuronas/metabolismo , Proteína Reelina , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Filtrado Sensorial , Serina Endopeptidasas/genética , Transmisión Sináptica
4.
J Neurosci ; 31(45): 16241-50, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22072675

RESUMEN

The protective/neurotoxic role of fractalkine (CX3CL1) and its receptor CX3C chemokine receptor 1 (CX3CR1) signaling in neurodegenerative disease is an intricate and highly debated research topic and it is becoming even more complicated as new studies reveal discordant results. It appears that the CX3CL1/CX3CR1 axis plays a direct role in neurodegeneration and/or neuroprotection depending on the CNS insult. However, all the above studies focused on the role of CX3CL1/CX3CR1 signaling in pathological conditions, ignoring the relevance of CX3CL1/CX3CR1 signaling under physiological conditions. No approach to date has been taken to decipher the significance of defects in CX3CL1/CX3CR1 signaling in physiological condition. In the present study we used CX3CR1⁻/⁻, CX3CR1⁺/⁻, and wild-type mice to investigate the physiological role of CX3CR1 receptor in cognition and synaptic plasticity. Our results demonstrate for the first time that mice lacking the CX3CR1 receptor show contextual fear conditioning and Morris water maze deficits. CX3CR1 deficiency also affects motor learning. Importantly, mice lacking the receptor have a significant impairment in long-term potentiation (LTP). Infusion with IL-1ß receptor antagonist significantly reversed the deficit in cognitive function and impairment in LTP. Our results reveal that under physiological conditions, disruption in CX3CL1 signaling will lead to impairment in cognitive function and synaptic plasticity via increased action of IL-1ß.


Asunto(s)
Trastornos del Conocimiento/patología , Hipocampo/patología , Hipocampo/fisiopatología , Potenciación a Largo Plazo/genética , Receptores de Interleucina-8A/deficiencia , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Biofisica , Bromodesoxiuridina/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cerebelo/metabolismo , Trastornos del Conocimiento/genética , Condicionamiento Psicológico/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Estimulación Eléctrica , Ensayo de Inmunoadsorción Enzimática/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/fisiología , Miedo/fisiología , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Potenciación a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microglía/patología , Actividad Motora/genética , Neurogénesis/genética , Técnicas de Placa-Clamp , Prueba de Desempeño de Rotación con Aceleración Constante
5.
Learn Mem ; 18(9): 558-64, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21852430

RESUMEN

Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive function; however, the in vivo effect of enhanced Reelin signaling on cognitive function and synaptic plasticity in wild-type mice is unknown. The present studies test the hypothesis that in vivo enhancement of Reelin signaling can alter synaptic plasticity and ultimately influence processes of learning and memory. Purified recombinant Reelin was injected bilaterally into the ventricles of wild-type mice. We demonstrate that a single in vivo injection of Reelin increased activation of adaptor protein Disabled-1 and cAMP-response element binding protein after 15 min. These changes correlated with increased dendritic spine density, increased hippocampal CA1 long-term potentiation (LTP), and enhanced performance in associative and spatial learning and memory. The present study suggests that an acute elevation of in vivo Reelin can have long-term effects on synaptic function and cognitive ability in wild-type mice.


Asunto(s)
Encéfalo/citología , Moléculas de Adhesión Celular Neuronal/farmacología , Cognición/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Proteínas de la Matriz Extracelular/farmacología , Proteínas del Tejido Nervioso/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/ultraestructura , Serina Endopeptidasas/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Proteína de Unión a CREB/metabolismo , Condicionamiento Psicológico/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Miedo/efectos de los fármacos , Miedo/psicología , Células HEK293/citología , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteína Reelina , Tinción con Nitrato de Plata/métodos
6.
Hum Mol Genet ; 20(5): 1000-7, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21159798

RESUMEN

Hippocampal neurogenesis is the lifelong production of new neurons in the central nervous system (CNS), and affects many physiological and pathophysiological conditions, including neurobehavioral disorders. The early postnatal stage is the most prominent neurogenesis period; however, the functional role of neurogenesis in this developing stage has not been well characterized. To understand the role of hippocampal neurogenesis in the postnatal developing period, we analyzed secretin, a neuropeptide, which is expressed significantly higher in the development stage. Secretin is a pleiotropic neuropeptide hormone that belongs to the secretin/VIP/glucagon peptide family. Although secretin was originally isolated in the gastrointestinal system, it has been found that secretin itself acts as a neuropeptide in the CNS. Here, we report a new function of secretin as a survival factor for neural progenitor cells in the hippocampus. We found that secretin-deficient mice exhibit decreased numbers of BrdU-labeled new neurons and dramatically increased apoptosis of doublecortin-positive neural progenitor cells in the subgranular zone of the dentate gyrus (DG) during the early postnatal period. Furthermore, we found that reduced survival of neural progenitor cells leads to decreased volume of DG, reduced long-term potentiation and impaired spatial learning ability in adults. Our studies demonstrate that secretin has important implications for neurogenesis in postnatal development, and affects neurobehavioral function in the adult mouse.


Asunto(s)
Neuronas/citología , Neuronas/metabolismo , Secretina/deficiencia , Células Madre/citología , Células Madre/metabolismo , Animales , Apoptosis , Supervivencia Celular , Giro Dentado/citología , Giro Dentado/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Secretina/genética
7.
Neuron Glia Biol ; 4(3): 259-70, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19674510

RESUMEN

Low-density-lipoprotein receptors (LDLRs) are an evolutionarily ancient surface protein family with the ability to activate a diversity of extracellular signals across the cellular membrane in the adult central nervous system (CNS). Their intimate roles in modulating synaptic plasticity and their necessity in hippocampal-dependent learning and memory have only recently come to light. Two known LDLR ligands, specifically apolipoprotein E (apoE) and reelin, have been the most widely investigated in this regard. Most of our understanding of synaptic plasticity comes from investigation of both pre- and postsynaptic alterations. Therefore, it is interesting to note that neurons and glia that do not contribute to the synaptic junction in question can secrete signaling molecules that affect synaptic plasticity. Notably, reelin and apoE have been shown to modulate hippocampal long-term potentiation in general, and affect NMDA receptor and AMPA receptor regulation specifically. Furthermore, these receptors and signaling molecules have significant roles in neuronal degenerative diseases such as Alzheimer's disease. The recent production of recombinant proteins, knockout and transgenic mice for receptors and ligands and the development of human ApoE targeted replacement mice have significantly expanded our understanding of the roles LDLRs and their ligands have in certain disease states and the accompanying initiation of specific signaling pathways. This review describes the role LDLRs, apoE and reelin have in the regulation of hippocampal synaptic plasticity.


Asunto(s)
Apolipoproteínas E/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Memoria/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Serina Endopeptidasas/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Apolipoproteínas E/genética , Encéfalo/citología , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Humanos , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/fisiología , Neuronas/citología , Proteína Reelina , Serina Endopeptidasas/genética
8.
Brain Res ; 1151: 20-31, 2007 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-17433272

RESUMEN

Excessive glutamate (Glu) stimulation of the NMDA-R is a widely recognized trigger for Ca(2+)-mediated excitotoxicity. Primary neurons typically show a large increase in vulnerability to excitotoxicity with increasing days in vitro (DIV). This enhanced vulnerability has been associated with increased expression of the NR2B subunit or increased NMDA-R current, but the detailed age-courses of these variables in primary hippocampal neurons have not been compared in the same study. Further, it is not clear whether the NMDA-R is the only source of excess Ca(2+). Here, we used primary hippocampal neurons to examine the age dependence of the increase in excitotoxic vulnerability with changes in NMDA-R current, and subunit expression. We also tested whether L-type voltage-gated Ca(2+) channels (L-VGCCs) contribute to the enhanced vulnerability. The EC(50) for Glu toxicity decreased by approximately 10-fold between 8-9 and 14-15 DIV, changing little thereafter. Parallel experiments found that during the same period both amplitude and duration of NMDA-R current increased dramatically; this was associated with an increase in protein expression of the NR1 and NR2A subunits, but not of the NR2B subunit. Compared to MK-801, ifenprodil, a selective NR2B antagonist, was less effective in protecting older than younger neurons from Glu insult. Conversely, nimodipine, an L-VGCC antagonist, protected older but not younger neurons. Our results indicate that enhanced excitotoxic vulnerability with age in culture was associated with a substantial increase in NMDA-R current, concomitant increases in NR2A and NR1 but not NR2B subunit expression, and with apparent recruitment of L-VGCCs into the excitotoxic process.


Asunto(s)
Envejecimiento/fisiología , Hipocampo/citología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Maleato de Dizocilpina/farmacología , Embrión de Mamíferos , Femenino , Expresión Génica/efectos de los fármacos , Ácido Glutámico/toxicidad , L-Lactato Deshidrogenasa/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Técnicas de Placa-Clamp/métodos , Embarazo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA