Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1160851, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577751

RESUMEN

Background: Tissue fibrosis is a major healthcare burden that affects various organs in the body for which no effective treatments exist. An underlying, emerging theme across organs and tissue types at early stages of fibrosis is the activation of pericytes and/or fibroblasts in the perivascular space. In hepatic tissue, it is well known that liver sinusoidal endothelial cells (EC) help maintain the quiescence of stellate cells, but whether this phenomenon holds true for other endothelial and perivascular cell types is not well studied. Methods: The goal of this work was to develop an organ-on-chip microvascular model to study the effect of EC co-culture on the activation of perivascular cells perturbed by the pro-fibrotic factor TGFß1. A high-throughput microfluidic platform, PREDICT96, that was capable of imparting physiologically relevant fluid shear stress on the cultured endothelium was utilized. Results: We first studied the activation response of several perivascular cell types and selected a cell source, human dermal fibroblasts, that exhibited medium-level activation in response to TGFß1. We also demonstrated that the PREDICT96 high flow pump triggered changes in select shear-responsive factors in human EC. We then found that the activation response of fibroblasts was significantly blunted in co-culture with EC compared to fibroblast mono-cultures. Subsequent studies with conditioned media demonstrated that EC-secreted factors play at least a partial role in suppressing the activation response. A Luminex panel and single cell RNA-sequencing study provided additional insight into potential EC-derived factors that could influence fibroblast activation. Conclusion: Overall, our findings showed that EC can reduce myofibroblast activation of perivascular cells in response to TGFß1. Further exploration of EC-derived factors as potential therapeutic targets in fibrosis is warranted.

2.
Sci Rep ; 11(1): 12225, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108507

RESUMEN

Microphysiological organ-on-chip models offer the potential to improve the prediction of drug safety and efficacy through recapitulation of human physiological responses. The importance of including multiple cell types within tissue models has been well documented. However, the study of cell interactions in vitro can be limited by complexity of the tissue model and throughput of current culture systems. Here, we describe the development of a co-culture microvascular model and relevant assays in a high-throughput thermoplastic organ-on-chip platform, PREDICT96. The system consists of 96 arrayed bilayer microfluidic devices containing retinal microvascular endothelial cells and pericytes cultured on opposing sides of a microporous membrane. Compatibility of the PREDICT96 platform with a variety of quantifiable and scalable assays, including macromolecular permeability, image-based screening, Luminex, and qPCR, is demonstrated. In addition, the bilayer design of the devices allows for channel- or cell type-specific readouts, such as cytokine profiles and gene expression. The microvascular model was responsive to perturbations including barrier disruption, inflammatory stimulation, and fluid shear stress, and our results corroborated the improved robustness of co-culture over endothelial mono-cultures. We anticipate the PREDICT96 platform and adapted assays will be suitable for other complex tissues, including applications to disease models and drug discovery.


Asunto(s)
Comunicación Celular , Técnicas de Cocultivo/métodos , Dermis/metabolismo , Endotelio Vascular/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Pericitos/metabolismo , Retina/metabolismo , Permeabilidad de la Membrana Celular , Células Cultivadas , Dermis/citología , Endotelio Vascular/citología , Humanos , Pericitos/citología , Retina/citología
3.
PLoS One ; 10(7): e0133318, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26177454

RESUMEN

Yersinia pestis, the causative agent of bubonic and pneumonic plague, is typically a zoonotic vector-borne disease of wild rodents. Bacterial biofilm formation in the proventriculus of the flea contributes to chronic infection of fleas and facilitates efficient disease transmission. However prior to biofilm formation, ingested bacteria must survive within the flea midgut, and yet little is known about vector-pathogen interactions that are required for flea gut colonization. Here we establish a Drosophila melanogaster model system to gain insight into Y. pestis colonization of the insect vector. We show that Y. pestis establishes a stable infection in the anterior midgut of fly larvae, and we used this model system to study the roles of genes involved in biofilm production and/or resistance to gut immunity stressors. We find that PhoP and GmhA both contribute to colonization and resistance to antimicrobial peptides in flies, and furthermore, the data suggest biofilm formation may afford protection against antimicrobial peptides. Production of reactive oxygen species in the fly gut, as in fleas, also serves to limit bacterial infection, and OxyR mediates Y. pestis survival in both insect models. Overall, our data establish the fruit fly as an informative model to elucidate the relationship between Y. pestis and its flea vector.


Asunto(s)
Sistema Digestivo/inmunología , Sistema Digestivo/microbiología , Resistencia a la Enfermedad/inmunología , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Inmunidad Innata , Yersinia pestis/fisiología , Animales , Péptidos Catiónicos Antimicrobianos/biosíntesis , Biopelículas , Recuento de Colonia Microbiana , Sistema Digestivo/parasitología , Drosophila melanogaster/parasitología , Larva/microbiología , Larva/parasitología , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Siphonaptera/fisiología
4.
Microb Pathog ; 47(4): 202-11, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19647061

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are a significant cause of zoonotic foodborne diarrheal disease in industrialized nations. In addition to Shiga toxin most STEC produce the enterohemolysin (EhxA) toxin. The EhxA toxin is encoded by the ehxCABD operon located on the large plasmid carried by STEC, yet its role in pathogenesis is unknown. A histone-like nucleoid-structuring protein (H-NS) null mutant of STEC O91:H21 strain B2F1 displayed a hyper-hemolytic phenotype, was defective in binding to human colonic epithelial cells, and was non-motile. We concluded that H-NS modulated expression of several genes in B2F1 including the ehx operon. Electrophoretic mobility shift assays indicate that H-NS binds to an 88bp region of DNA upstream of the ehxC start codon. To determine if the same region of DNA was sensitive to repression by H-NS, a transcriptional fusion was constructed between the putative promoter region of ehx and a promoterless lacZ gene. The beta-galactosidase activity detected was low in E. coli that produced H-NS but was significantly higher in the H-NS null background. Taken together, the data indicates that in STEC the 88bp region upstream of the ehx operon contains a cis-acting element to which H-NS binds and negatively regulates expression of enterohemolysin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Escherichia coli Shiga-Toxigénica/fisiología , Fusión Artificial Génica , Adhesión Bacteriana , Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Genes Reporteros , Hemólisis , Humanos , Locomoción , Operón , Fosfoproteínas/genética , Unión Proteica , Escherichia coli Shiga-Toxigénica/patogenicidad , Transcripción Genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...