Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 35(5): e21560, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33860543

RESUMEN

Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Nefropatías Diabéticas/patología , Filaminas/metabolismo , Adhesiones Focales/patología , Glomérulos Renales/patología , Podocitos/patología , Estrés Mecánico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , Adhesión Celular , Movimiento Celular , Nefropatías Diabéticas/metabolismo , Adhesiones Focales/metabolismo , Humanos , Glomérulos Renales/metabolismo , Ratones , Persona de Mediana Edad , Podocitos/metabolismo , Estudios Retrospectivos , Transducción de Señal
2.
FASEB J ; 33(12): 14450-14460, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31675484

RESUMEN

Hypertension is one of the central causes of kidney damage. In the past it was shown that glomerular hypertension leads to morphologic changes of podocytes and effacement and is responsible for detachment of these postmitotic cells. Because we have shown that podocytes are mechanosensitive and respond to mechanical stress by reorganization of the actin cytoskeleton in vitro, we look for mechanotransducers in podocytes. In this study, we demonstrate that the extracellular matrix protein fibronectin (Fn1) might be a potential candidate. The present study shows that Fn1 is essential for the attachment of podocytes during mechanical stress. By real-time quantitative PCR as well as by liquid chromatography-mass spectrometry, we found a significant up-regulation of Fn1 caused by mechanical stretch (3 d, 0.5 Hz, and 5% extension). To study the role of Fn1 in cultured podocytes under mechanical stress, Fn1 was knocked down (Fn1 KD) by a specific small interfering RNA. Additionally, we established a Fn1 knockout (KO) podocyte cell line (Fn1 KO) by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). During mechanical stress, a significant loss of podocytes (>80%) was observed in Fn1 KD as well as Fn1 KO podocytes compared with control cells. Furthermore, Fn1 KO podocytes showed a significant down-regulation of the focal adhesion proteins talin, vinculin, and paxillin and a reduced cell spreading, indicating an important role of Fn1 in adhesion. Analyses of kidney sections from patients with diabetic nephropathy have shown a significant up-regulation of FN1 in contrast to control biopsies. In summary, we show that Fn1 plays an important role in the adaptation of podocytes to mechanical stress.-Kliewe, F., Kaling, S., Lötzsch, H., Artelt, N., Schindler, M., Rogge, H., Schröder, S., Scharf, C., Amann, K., Daniel, C., Lindenmeyer, M. T., Cohen, C. D., Endlich, K., Endlich, N. Fibronectin is up-regulated in podocytes by mechanical stress.


Asunto(s)
Fibronectinas/metabolismo , Podocitos/fisiología , Estrés Mecánico , Animales , Fenómenos Biomecánicos , Adhesión Celular/fisiología , Regulación hacia Abajo , Fibronectinas/genética , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Integrinas/genética , Integrinas/metabolismo , Glomérulos Renales/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba
3.
J Am Soc Nephrol ; 29(6): 1662-1678, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29720549

RESUMEN

Background Podocyte loss and effacement of interdigitating podocyte foot processes are the major cause of a leaky filtration barrier and ESRD. Because the complex three-dimensional morphology of podocytes depends on the actin cytoskeleton, we studied the role in podocytes of the actin bundling protein palladin, which is highly expressed therein.Methods We knocked down palladin in cultured podocytes by siRNA transfection or in zebrafish embryos by morpholino injection and studied the effects by immunofluorescence and live imaging. We also investigated kidneys of mice with podocyte-specific knockout of palladin (PodoPalld-/- mice) by immunofluorescence and ultrastructural analysis and kidney biopsy specimens from patients by immunostaining for palladin.Results Compared with control-treated podocytes, palladin-knockdown podocytes had reduced actin filament staining, smaller focal adhesions, and downregulation of the podocyte-specific proteins synaptopodin and α-actinin-4. Furthermore, palladin-knockdown podocytes were more susceptible to disruption of the actin cytoskeleton with cytochalasin D, latrunculin A, or jasplakinolide and showed altered migration dynamics. In zebrafish embryos, palladin knockdown compromised the morphology and dynamics of epithelial cells at an early developmental stage. Compared with PodoPalld+/+ controls, PodoPalld-/- mice developed glomeruli with a disturbed morphology, an enlarged subpodocyte space, mild effacement, and significantly reduced expression of nephrin and vinculin. Furthermore, nephrotoxic serum injection led to significantly higher levels of proteinuria in PodoPalld-/- mice than in controls. Kidney biopsy specimens from patients with diabetic nephropathy and FSGS showed downregulation of palladin in podocytes as well.Conclusions Palladin has an important role in podocyte function in vitro and in vivo.


Asunto(s)
Actinas/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Podocitos/metabolismo , Animales , Citoesqueleto , Femenino , Adhesiones Focales , Expresión Génica , Silenciador del Gen , Humanos , Glomérulos Renales/patología , Masculino , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Morfolinos/farmacología , Podocitos/patología , ARN Mensajero/metabolismo , Vinculina/genética , Vinculina/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Sci Rep ; 7(1): 9916, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855604

RESUMEN

Glomerular hypertension causes glomerulosclerosis via the loss of podocytes, which are challenged by increased mechanical load. We have demonstrated that podocytes are mechanosensitive. However, the response of podocytes to mechanical stretching remains incompletely understood. Here we demonstrate that the actin-bundling protein fascin-1 plays an important role in podocytes that are exposed to mechanical stress. Immunofluorescence staining revealed colocalization of fascin-1 and nephrin in mouse kidney sections. In cultured mouse podocytes fascin-1 was localized along actin fibers and filopodia in stretched and unstretched podocytes. The mRNA and protein levels of fascin-1 were not affected by mechanical stress. By Western blot and 2D-gelelectrophoresis we observed that phospho-fascin-1 was significantly downregulated after mechanical stretching. It is known that phosphorylation at serine 39 (S39) regulates the bundling activity of fascin-1, e.g. required for filopodia formation. Podocytes expressing wild type GFP-fascin-1 and non-phosphorylatable GFP-fascin-1-S39A showed marked filopodia formation, being absent in podocytes expressing phosphomimetic GFP-fascin-1-S39D. Finally, the immunofluorescence signal of phosphorylated fascin-1 was strongly reduced in glomeruli of patients with diabetic nephropathy compared to healthy controls. In summary, mechanical stress dephosphorylates fascin-1 in podocytes in vitro and in vivo thereby fascin-1 may play an important role in the adaptation of podocytes to mechanical forces.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Microfilamentos/fisiología , Podocitos/fisiología , Estrés Mecánico , Actinas/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Humanos , Riñón/citología , Riñón/metabolismo , Riñón/ultraestructura , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Inmunoelectrónica , Fosforilación , Podocitos/citología , Podocitos/metabolismo , Unión Proteica , Seudópodos/metabolismo , Serina/metabolismo
5.
Biomed Tech (Berl) ; 58(6): 601-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24163220

RESUMEN

Ferrofluids, which are stable, colloidal suspensions of single-domain magnetic nanoparticles, have a large impact on medical technologies like magnetic particle imaging (MPI), magnetic resonance imaging (MRI) and hyperthermia. Here, computer simulations promise to improve our understanding of the versatile magnetization dynamics of diluted ferrofluids. A detailed algorithmic introduction into the simulation of diluted ferrofluids will be presented. The algorithm is based on Langevin equations and resolves the internal and the external rotation of the magnetic moment of the nanoparticles, i.e., the Néel and Brown diffusion. The derived set of stochastic differential equations are solved by a combination of an Euler and a Heun integrator and tested with respect to Boltzmann statistics.


Asunto(s)
Campos Magnéticos , Nanopartículas de Magnetita/química , Modelos Químicos , Soluciones/química , Simulación por Computador , Impedancia Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...