Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 15: 1393181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784035

RESUMEN

Aging is linked to a time-associated decline in both cellular function and repair capacity leading to malfunction on an organismal level, increased frailty, higher incidence of diseases, and death. As the population grows older, there is a need to reveal mechanisms associated with aging that could spearhead treatments to postpone the onset of age-associated decline, extend both healthspan and lifespan. One possibility is targeting the sirtuin SIRT1, the founding member of the sirtuin family, a highly conserved family of histone deacetylases that have been linked to metabolism, stress response, protein synthesis, genomic instability, neurodegeneration, DNA damage repair, and inflammation. Importantly, sirtuins have also been implicated to promote health and lifespan extension, while their dysregulation has been linked to cancer, neurological processes, and heart disorders. SIRT1 is one of seven members of sirtuin family; each requiring nicotinamide adenine dinucleotide (NAD+) as co-substrate for their catalytic activity. Overexpression of yeast, worm, fly, and mice SIRT1 homologs extend lifespan in each animal, respectively. Moreover, lifespan extension due to calorie restriction are associated with increased sirtuin activity. These findings led to the search for a calorie restriction mimetic, which revealed the compound resveratrol; (3, 5, 4'-trihydroxy-trans-stilbene) belonging to the stilbenoids group of polyphenols. Following this finding, resveratrol and other sirtuin-activating compounds have been extensively studied for their ability to affect health and lifespan in a variety of species, including humans via clinical studies.

2.
Proc Natl Acad Sci U S A ; 120(50): e2311019120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064506

RESUMEN

The prevalence of obesity is increasing in older adults and contributes to age-related decline. Caloric restriction (CR) alleviates obesity phenotypes and delays the onset of age-related changes. However, how late in life organisms benefit from switching from a high-(H) to a low-calorie (L) diet is unclear. We transferred male flies from a H to a L (HL) diet or vice versa (LH) at different times during life. Both shifts immediately change fly rate of aging even when applied late in life. HL shift rapidly reduces fly mortality rate to briefly lower rate than in flies on a constant L diet, and extends lifespan. Transcriptomic analysis uncovers that flies aged on H diet have acquired increased stress response, which may have temporal advantage over flies aged on L diet and leads to rapid decrease in mortality rate after HL switch. Conversely, a LH shift increases mortality rate, which is temporarily higher than in flies aged on a H diet, and shortens lifespan. Unexpectedly, more abundant transcriptomic changes accompanied LH shift, including increase in ribosome biogenesis, stress response and growth. These changes reflect protection from sudden release of ROS, energy storage, and use of energy to growth, which all likely contribute to higher mortality rate. As the beneficial effects of CR on physiology and lifespan are conserved across many organisms, our study provides framework to study underlying mechanisms of CR interventions that counteract the detrimental effects of H diets and reduce rate of aging even when initiated later in life.


Asunto(s)
Ingestión de Energía , Longevidad , Animales , Masculino , Longevidad/fisiología , Envejecimiento/fisiología , Restricción Calórica , Drosophila melanogaster/fisiología , Obesidad
4.
Metabolites ; 11(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34677421

RESUMEN

I'm Not Dead Yet (Indy) is a fly gene that encodes a homologue of mammalian SLC13A5 plasma membrane citrate transporter. Reducing expression of Indy gene in flies, and its homologues in worms, extends longevity. Indy reduction in flies, worms, mice and rats affects metabolism by regulating the levels of cytoplasmic citrate, inducing a state similar to calorie restriction. Changes include lower lipid levels, increased insulin sensitivity, increased mitochondrial biogenesis, and prevention of weight gain, among others. The INDY protein is predominantly expressed in fly metabolic tissues: the midgut, fat body and oenocytes. Changes in fly midgut metabolism associated with reduced Indy gene activity lead to preserved mitochondrial function and reduced production of reactive oxygen species. All these changes lead to preserved intestinal stem cell homeostasis, which has a key role in maintaining intestinal epithelium function and enhancing fly healthspan and lifespan. Indy gene expression levels change in response to caloric content of the diet, inflammation and aging, suggesting that INDY regulates metabolic adaptation to nutrition or energetic requirements by controlling citrate levels.

5.
Front Genet ; 12: 733184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567083

RESUMEN

Aging has provided fruitful challenges for evolutionary theory, and evolutionary theory has deepened our understanding of aging. A great deal of genetic and molecular data now exists concerning mortality regulation and there is a growing body of knowledge concerning the life histories of diverse species. Assimilating all relevant data into a framework for the evolution of aging promises to significantly advance the field. We propose extensions of some key concepts to provide greater precision when applying these concepts to age-structured contexts. Secondary or byproduct effects of mutations are proposed as an important factor affecting survival patterns, including effects that may operate in small populations subject to genetic drift, widening the possibilities for mutation accumulation and pleiotropy. Molecular and genetic studies have indicated a diverse array of mechanisms that can modify aging and mortality rates, while transcriptome data indicate a high level of tissue and species specificity for genes affected by aging. The diversity of mechanisms and gene effects that can contribute to the pattern of aging in different organisms may mirror the complex evolutionary processes behind aging.

6.
Front Aging ; 2: 782162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822025

RESUMEN

I'm Not Dead Yet (Indy) is a fly homologue of the mammalian SLC13A5 (mSLC13A5) plasma membrane citrate transporter, a key metabolic regulator and energy sensor involved in health, longevity, and disease. Reduction of Indy gene activity in flies, and its homologs in worms, modulates metabolism and extends longevity. The metabolic changes are similar to what is obtained with caloric restriction (dietary restriction). Similar effects on metabolism have been observed in mice and rats. As a citrate transporter, INDY regulates cytoplasmic citrate levels. Indy flies heterozygous for a P-element insertion have increased spontaneous physical activity, increased fecundity, reduced insulin signaling, increased mitochondrial biogenesis, preserved intestinal stem cell homeostasis, lower lipid levels, and increased stress resistance. Mammalian Indy knockout (mIndy-KO) mice have higher sensitivity to insulin signaling, lower blood pressure and heart rate, preserved memory and are protected from the negative effects of a high-fat diet and some of the negative effects of aging. Reducing mIndy expression in human hepatocarcinoma cells has recently been shown to inhibit cell proliferation. Reduced Indy expression in the fly intestine affects intestinal stem cell proliferation, and has recently been shown to also inhibit germ cell proliferation in males with delayed sperm maturation and decreased spermatocyte numbers. These results highlight a new connection between energy metabolism and cell proliferation. The overrall picture in a variety of species points to a conserved role of INDY for metabolism and health. This is illustrated by an association of high mIndy gene expression with non-alcoholic fatty liver disease in obese humans. mIndy (mSLC13A5) coding region mutations (e.g., loss-of-function) are also associated with adverse effects in humans, such as autosomal recessive early infantile epileptic encephalopathy and Kohlschütter-Tönz syndrome. The recent findings illustrate the importance of mIndy gene for human health and disease. Furthermore, recent work on small-molecule regulators of INDY highlights the promise of INDY-based treatments for ameliorating disease and promoting healthy aging.

7.
Front Genet ; 8: 66, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28596784

RESUMEN

The Indy (I'm Not Dead Yet) gene encodes the fly homolog of the mammalian SLC13A5 citrate transporter. Reduced expression of the Indy gene in flies and worms extends their longevity. INDY is expressed in the plasma membrane of metabolically active tissues. Decreased expression of Indy in worms, flies, mice, and rats alters metabolism in a manner similar to calorie restriction. Reducing INDY activity prevents weight gain in flies, worms, and mice, and counteracts the negative effects of age or a high fat diet on metabolism and insulin sensitivity. The metabolic effects of reducing INDY activity are the result of reduced cytoplasmic citrate. Citrate is a key metabolite and has a central role in energy status of the cell by effecting lipid and carbohydrate metabolism and energy production. Thereby newly described drugs that reduce INDY transporting activity increase insulin sensitivity and reduce hepatic lipid levels via its effect on hepatic citrate uptake. A recent report presented the first direct link between increased hepatic levels of human INDY, insulin resistance, and non-alcoholic fatty liver disease in obese humans. Similarly increased hepatic mIndy levels were observed in non-human primates fed on a high fat diet for 2 years. This effect is mediated via the stimulatory effect of the interleukin-6/Stat3 pathway on mINDY hepatic expression. These findings make INDY a potential and very promising target for the treatment of metabolic disorders in humans.

8.
Nutr Healthy Aging ; 4(2): 169-179, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28447071

RESUMEN

BACKGROUND: Rpd3 is a conserved histone deacetylase that removes acetyl groups from lysine residues within histones and other proteins. Reduction or inhibition of Rpd3 extends longevity in yeast, worms, and flies. Previous studies in flies suggest an overlap with the mechanism of lifespan extension by dietary restriction. However, the mechanism of rpd3's effects on longevity remains unclear. OBJECTIVES: In this study we investigated how rpd3 reduction affects fly spontaneous physical activity, fecundity, and stress resistance. METHODS: We examined the effects of rpd3 reduction on fly spontaneous physical activity by using population monitors, we determined female fecundity by counting daily egg laying, and we determined fly survivorship in response to starvation and paraquat. RESULTS: In flies, rpd3 reduction increases peak spontaneous physical activity of rpd3 def male flies at a young age but does not affect total 24 hour activity. Male and female rpd3 def mutants are more resistant to starvation on low and high calorie diets. In addition, increased resistance to paraquat was observed in females of one allele. A decrease in rpd3 levels does not affect female fecundity. CONCLUSIONS: A decrease in rpd3 levels mirrors some but not all changes associated with calorie restriction, illustrated by an increased peak of spontaneous activity in rpd3 def /+ heterozygous male flies but no effect on total spontaneous activity and fecundity.

9.
Aging (Albany NY) ; 8(11): 3028-3044, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27852975

RESUMEN

Histone deacetylase (HDAC) 1 regulates chromatin compaction and gene expression by removing acetyl groups from lysine residues within histones. HDAC1 affects a variety of processes including proliferation, development, metabolism, and cancer. Reduction or inhibition of Rpd3, yeast and fly HDAC1 orthologue, extends longevity. However, the mechanism of rpd3's effects on longevity remains unclear. Here we report an overlap between rpd3 and the Insulin/Insulin-like growth factor signaling (IIS) longevity pathways. We demonstrated that rpd3 reduction downregulates expression of members of the IIS pathway, which is associated with altered metabolism, increased energy storage, and higher resistance to starvation and oxidative stress. Genetic studies support the role of IIS in rpd3 longevity pathway, as illustrated with reduced stress resistance and longevity of flies double mutant for rpd3 and dfoxo, a downstream target of IIS pathway, compared to rpd3 single mutant flies. Our data suggest that increased dfoxo is a mediator of rpd3's effects on fly longevity and intermediary metabolism, and confer a new link between rpd3 and IIS longevity pathways.


Asunto(s)
Proteínas de Drosophila/metabolismo , Histona Desacetilasa 1/metabolismo , Longevidad/genética , Envejecimiento/genética , Animales , Western Blotting , Regulación hacia Abajo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Insulina/metabolismo , Masculino , Mutación , Transducción de Señal/genética , Inanición/metabolismo
10.
Exp Gerontol ; 86: 124-128, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-26927903

RESUMEN

The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology.


Asunto(s)
Proteínas de Drosophila/fisiología , Histona Desacetilasa 1/fisiología , Longevidad/fisiología , Envejecimiento/fisiología , Animales , Dieta , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Epigénesis Genética/fisiología , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 1/genética , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/fisiología , Sirtuinas/fisiología
11.
Aging (Albany NY) ; 7(12): 1112-29, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26647291

RESUMEN

Single-gene mutations that extend longevity have revealed regulatory pathways related to aging and longevity. RPD3 is a conserved histone deacetylase (Class I HDAC). Previously we showed that Drosophila rpd3 mutations increase longevity. Here we tested the longevity effects of RPD3 on multiple nutrient levels. Dietary restriction (DR) has additive effects on RPD3-mediated longevity extension, but the effect may be modestly attenuated relative to controls. RPD3 and DR therefore appear to operate by distinct but interacting mechanisms. Since RPD3 regulates transcription, the mRNA levels for two proteins involved in nutrient signaling, 4E-BP and Tor, were examined in rpd3 mutant flies. 4E-BP mRNA was reduced under longevity-increasing conditions. Epistasis between RPD3 and 4E-BP with regard to longevity was then tested. Flies only heterozygous for a mutation in Thor, the 4E-BP gene, have modestly decreased life spans. Flies mutant for both rpd3 and Thor show a superposition of a large RPD3-mediated increase and a small Thor-mediated decrease in longevity at all food levels, consistent with each gene product having distinct effects on life span. However, DR-mediated extension was absent in males carrying both mutations and lessened in females. Our results support the view that multiple discrete but interacting mechanisms regulate longevity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica/fisiología , Histona Desacetilasa 1/metabolismo , Longevidad/fisiología , Alimentación Animal , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Femenino , Genotipo , Histona Desacetilasa 1/genética , Longevidad/genética , Masculino , Mutación , Transducción de Señal
12.
Front Genet ; 6: 204, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106407

RESUMEN

Indy (I'm Not Dead Yet) encodes the fly homolog of a mammalian SLC13A5 plasma membrane transporter. INDY is expressed in metabolically active tissues functioning as a transporter of Krebs cycle intermediates with the highest affinity for citrate. Decreased expression of the Indy gene extends longevity in Drosophila and C. elegans. Reduction of INDY or its respective homologs in C. elegans and mice induces metabolic and physiological changes similar to those observed in calorie restriction. It is thought that these physiological changes are due to altered levels of cytoplasmic citrate, which directly impacts Krebs cycle energy production as a result of shifts in substrate availability. Citrate cleavage is a key event during lipid and glucose metabolism; thus, reduction of citrate due to Indy reduction alters these processes. With regards to mammals, mice with reduced Indy (mIndy(-/-)) also exhibit changes in glucose metabolism, mitochondrial biogenesis and are protected from the negative effects of a high calorie diet. Together, these data support a role for Indy as a metabolic regulator, which suggests INDY as a therapeutic target for treatment of diet and age-related disorders such as Type II Diabetes and obesity.

13.
Front Genet ; 5: 122, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24847356

RESUMEN

It has been 20 years since the Orentreich Foundation for the Advancement of Science, under the leadership Dr. Norman Orentreich, first reported that low methionine (Met) ingestion by rats extends lifespan (Orentreich et al., 1993). Since then, several studies have replicated the effects of dietary methionine restricted (MR) in delaying age-related diseases (Richie et al., 1994; Miller et al., 2005; Ables et al., 2012; Sanchez-Roman and Barja, 2013). We report the abstracts from the First International Mini-Symposium on Methionine Restriction and Lifespan held in Tarrytown, NY, September 2013. The goals were (1) to gather researchers with an interest in MR and lifespan, (2) to exchange knowledge, (3) to generate ideas for future investigations, and (4) to strengthen relationships within this community. The presentations highlighted the importance of research on cysteine, growth hormone (GH), and ATF4 in the paradigm of aging. In addition, the effects of dietary restriction or MR in the kidneys, liver, bones, and the adipose tissue were discussed. The symposium also emphasized the value of other species, e.g., the naked mole rat, Brandt's bat, and Drosophila, in aging research. Overall, the symposium consolidated scientists with similar research interests and provided opportunities to conduct future collaborative studies (Figure 3).

14.
Aging (Albany NY) ; 6(4): 335-50, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24827528

RESUMEN

The Drosophila Indy (I'm Not Dead Yet) gene encodes a plasma membrane transporter of Krebs cycle intermediates, with robust expression in tissues associated with metabolism. Reduced INDY alters metabolism and extends longevity in a manner similar to caloric restriction (CR); however, little is known about the tissue specific physiological effects of INDY reduction. Here we focused on the effects of INDY reduction in the Drosophila midgut due to the importance of intestinal tissue homeostasis in healthy aging and longevity. The expression of Indy mRNA in the midgut changes in response to aging and nutrition. Genetic reduction of Indy expression increases midgut expression of the mitochondrial regulator spargel/dPGC-1, which is accompanied by increased mitochondrial biogenesis and reduced reactive oxygen species (ROS). These physiological changes in the Indy mutant midgut preserve intestinal stem cell (ISC) homeostasis and are associated with healthy aging. Genetic studies confirm that dPGC-1 mediates the regulatory effects of INDY, as illustrated by lack of longevity extension and ISC homeostasis in flies with mutations in both Indy and dPGC1. Our data suggest INDY may be a physiological regulator that modulates intermediary metabolism in response to changes in nutrient availability and organismal needs by modulating dPGC-1.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Homeostasis/genética , Longevidad/genética , Mitocondrias/genética , Factor B de Elongación Transcripcional Positiva/genética , Células Madre/metabolismo , Simportadores/genética , Animales , Animales Modificados Genéticamente , Restricción Calórica , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Intestinos/citología , Mitocondrias/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Simportadores/metabolismo
15.
J Vis Exp ; (86)2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24747955

RESUMEN

Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases.


Asunto(s)
Drosophila melanogaster/fisiología , Locomoción/fisiología , Actividad Motora/fisiología , Animales , Femenino , Masculino , Programas Informáticos
16.
Front Genet ; 4: 47, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23580130

RESUMEN

Decreased expression of the fly and worm Indy genes extends longevity. The fly Indy gene and its mammalian homolog are transporters of Krebs cycle intermediates, with the highest rate of uptake for citrate. Cytosolic citrate has a role in energy regulation by affecting fatty acid synthesis and glycolysis. Fly, worm, and mice Indy gene homologs are predominantly expressed in places important for intermediary metabolism. Consequently, decreased expression of Indy in fly and worm, and the removal of mIndy in mice exhibit changes associated with calorie restriction, such as decreased levels of lipids, changes in carbohydrate metabolism and increased mitochondrial biogenesis. Here we report that several Indy alleles in a diverse array of genetic backgrounds confer increased longevity.

18.
Front Genet ; 3: 108, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22707956
19.
Fly (Austin) ; 6(1): 57-67, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22513411

RESUMEN

The voltage-gated Na (+) channels (VGSC) are complex membrane proteins responsible for generation and propagation of the electrical signals through the brain, the skeletal muscle and the heart. The levels of sodium channels affect behavior and physical activity. This is illustrated by the maleless mutant allele (mle (napts)) in Drosophila, where the decreased levels of voltage-gated Na(+) channels cause temperature-sensitive paralysis. Here, we report that mle (napts) mutant flies exhibit developmental lethality, decreased fecundity and increased neurodegeneration. The negative effect of decreased levels of Na(+) channels on development and ts-paralysis was more pronounced at 18 and 29°C than at 25°C, suggesting particular sensitivity of the mle (napts) flies to temperatures above and below normal environmental conditions. Similarly, longevity of mle (napts) flies was unexpectedly short at 18 and 29°C compared with flies heterozygous for the mle (napts) mutation. Developmental lethality and neurodegeneration of mle (napts) flies was partially rescued by increasing the dosage of para, confirming a vital role of Na(+) channels in development, longevity and neurodegeneration of flies and their adaptation to temperatures.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/fisiología , Factores de Transcripción/metabolismo , Envejecimiento/genética , Animales , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Drosophila/genética , Proteínas de Drosophila/genética , Longevidad , Mutación , Factores de Transcripción/genética
20.
Front Genet ; 3: 13, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363340

RESUMEN

Indy encodes the fly homolog of a mammalian transporter of di and tricarboxylate components of the Krebs cycle. Reduced expression of fly Indy or two of the C. elegans Indy homologs leads to an increase in life span. Fly and worm tissues that play key roles in intermediary metabolism are also the places where Indy genes are expressed. One of the mouse homologs of Indy (mIndy) is mainly expressed in the liver. It has been hypothesized that decreased INDY activity creates a state similar to caloric restriction (CR). This hypothesis is supported by the physiological similarities between Indy mutant flies on high calorie food and control flies on CR, such as increased physical activity and decreases in weight, egg production, triglyceride levels, starvation resistance, and insulin signaling. In addition, Indy mutant flies undergo changes in mitochondrial biogenesis also observed in CR animals. Recent findings with mIndy knockout mice support and extend the findings from flies. mIndy(-/-) mice display an increase in hepatic mitochondrial biogenesis, lipid oxidation, and decreased hepatic lipogenesis. When mIndy(-/-) mice are fed high calorie food they are protected from adiposity and insulin resistance. These findings point to INDY as a potential drug target for the treatment of metabolic syndrome, type 2 diabetes, and obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...