Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(38): 15479-15489, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37682020

RESUMEN

Metal-organic frameworks (MOFs) are attracting increasing attention as adsorbents of contaminants of emerging concern that are difficult to remove by conventional processes. This paper examines how functional groups covering the pore walls of phosphinate-based MOFs affect the adsorption of specific pharmaceutical pollutants (diclofenac, cephalexin, and sulfamethoxazole) and their hydrolytic stability. New structures, isoreticular to the phosphinate MOF ICR-7, are presented. The phenyl ring facing the pore wall of the presented MOFs is modified with dimethylamino groups (ICR-8) and ethyl carboxylate groups (ICR-14). These functionalized MOFs were obtained from two newly synthesized phosphinate linkers containing the respective functional groups. The presence of additional functional groups resulted in higher affinity toward the tested pollutants compared to ICR-7 or activated carbon. However, this modification also comes with a reduced adsorption capacity. Importantly, the introduction of the functional groups enhanced the hydrolytic stability of the MOFs.

2.
IUCrJ ; 10(Pt 2): 210-219, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36815712

RESUMEN

The transformation processes of non-solvated ibrutinib into a series of halogenated benzene solvates are explored in detail here. The transformation was studied in real time by X-ray powder diffraction in a glass capillary. Crystal structures of chlorobenzene, bromobenzene and iodobenzene solvates are isostructural, whereas the structure of fluorobenzene solvate is different. Four different mechanisms for transformation were discovered despite the similarity in the chemical nature of the solvents and crystal structures of the solvates formed. These mechanisms include direct transformations and transformations with either a crystalline or an amorphous intermediate phase. The binding preference of each solvate in the crystal structure of the solvates was examined in competitive slurry experiments and further confirmed by interaction strength calculations. Overall, the presented system and online X-ray powder diffraction measurement provide unique insights into the formation of solvates.

3.
J Colloid Interface Sci ; 631(Pt B): 22-32, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36379113

RESUMEN

Niosomes are vesicular carriers formed by a bilayer shell, which is composed of non-ionic surfactants with the addition of a structural supporting agent. Cholesterol is typically used as an additive to increase the stability or drug entrapment efficiency of niosomes. Although increasing the amount of cholesterol is reported to improve niosomal properties, an excessive amount of cholesterol may not be accommodated in the bilayer shell, and thus remain in the crystalline form in the niosomal solution. The presence of a crystalline phase is a potential risk for further medical application. Therefore, Tween 80-based niosomes were prepared using a well-established thin-film hydration method and organic phase injection method, followed by their thorough characterization in order to estimate the cholesterol incorporation into the niosomal shell. To detect the crystalline phase in the niosomal suspensions, a novel approach based on depolarized dynamic light scattering combined with cryo-transmission electron microscopy, X-ray diffraction and optical microscopy is used to confirm the presence of cholesterol crystals. This method is fast, quantitative, and allows the sample analysis in a natural liquid environment, thus eliminating biased results influenced by sample drying.


Asunto(s)
Desecación , Liposomas , Suspensiones , Dispersión Dinámica de Luz , Microscopía Electrónica de Transmisión
4.
Inorg Chem ; 61(47): 18990-18997, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36367986

RESUMEN

The rational design of metal-organic frameworks (MOFs) is one of the driving forces behind the great success that this class of materials is experiencing. The so-called isoreticular approach is a key design tool, very often used to tune the size, steric properties, and additional functional groups of the linker used. In this work, we go one step further and show that even linkers with two different coordinating groups, namely, phosphonate and phosphinate, can form isoreticular MOFs. This effectively bridges the gap between MOFs utilizing phosphinate and phosphonate coordinating groups. Using a novel bifunctional ligand, 4-[hydroxy(methyl)phosphoryl]phenylphosphonic acid [H3PPP(Me)], we were able to prepare ICR-12, a MOF isoreticular to already published MOFs containing bisphosphinate linkers (e.g., ICR-4). An isostructural MOF ICR-13 was also successfully prepared using 1,4-benzenediphosphonic acid. We envisage that this strategy can be used to further enlarge the pool of MOFs.

5.
Phys Chem Chem Phys ; 24(42): 25904-25917, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36260017

RESUMEN

Carboxylic acids of the Krebs cycle possess invaluable biochemical significance. Still, there are severe gaps in the availability of thermodynamic and crystallographic data, as well as ambiguities prevailing in the literature on the thermodynamic characterization and polymorph ranking. Providing an unambiguous description of the structure, thermodynamics and polymorphism of their neat crystalline phases requires a complex multidisciplinary approach. This work presents results of an extensive investigation of the structural anisotropy of the thermal expansion and local dynamics within these crystals, obtained from a beneficial cooperation of NMR crystallography and ab initio calculations of non-covalent interactions. The observed structural anisotropy and spin-lattice relaxation times are traced to large spatial variations in the strength of molecular interactions in the crystal lattice, especially in the orientation of the hydrogen bonds. A completely resolved crystal structure for oxaloacetic acid is reported for the first time. Thanks to multi-instrumental calorimetric effort, this work clarifies phase behavior, determines third-law entropies of the crystals, and states definitive polymorph ranking for succinic and fumaric acids. These thermodynamic observations are then interpreted in terms of first-principles quasi-harmonic calculations of cohesive properties. A sophisticated model capturing electronic, thermal, and configurational-entropic effects on the crystal structure approaches captures the subtle Gibbs energy differences governing polymorph ranking for succinic and fumaric acids, representing another success story of computational chemistry.


Asunto(s)
Ácidos Carboxílicos , Cristalización , Anisotropía , Termodinámica , Enlace de Hidrógeno
6.
Inorg Chem ; 61(19): 7506-7512, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35512292

RESUMEN

Metal-organic frameworks (MOFs) are attracting attention as potential proton conductors. There are two main advantages of MOFs in this application: the possibility of rational design and tuning of the properties and clear conduction pathways given by their crystalline structure. We hereby present two new MOF structures, ICR-10 and ICR-11, based on tetratopic phosphinate ligands. The structures of both MOFs were determined by 3D electron diffraction. They both crystallize in the P3̅ space group and contain arrays of parallel linear pores lined with hydrophilic noncoordinated phosphinate groups. This, together with the adsorbed water molecules, facilitates proton transfer via the Grotthuss mechanism, leading to a proton conductivity of up to 4.26 × 10-4 S cm-1 for ICR-11. The presented study demonstrates the high potential of phosphinate MOFs for the fabrication of proton conductors.

7.
Dalton Trans ; 51(10): 4019-4032, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35174830

RESUMEN

Saponification, resulting from pigment-binder interactions, is one of the most endangering phenomena affecting the appearance and stability of painted works of art. The crystallization of metal carboxylates (soaps) in paint layers is recently assumed as the most critical point for the development of undesirable changes induced by saponification, however, the factors triggering it are not fully understood. The red pigment cinnabar (HgS) has been suspected of contributing to saponification, however, the paucity of reliable reference structural data limited the experimental research of its effect at the molecular level. Within this study we synthesized mercury(II) carboxylates of the formula Hg(C16)x(C18)2-x (x = 0.0; 0.2; 0.5; 0.8; 1.0; 1.2; 1.5; 1.8; 2.0) where C16 and C18 are hexadecanoate (palmitate) and octadecanoate (stearate), respectively, and characterize them by combination of X-ray powder diffraction (XRPD) and 13C and 199Hg solid state NMR (ssNMR). For a more detailed interpretation of their structural and thermal behavior, Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used. The crystal structure of the studied mercury carboxylates was described on the basis of complementary ssNMR and XRPD measurements, Rietveld refinement and DFT calculations. All the subjected compounds crystallize in a monoclinic lattice of the C2/c symmetry. Mercury atoms are arranged in a slightly distorted square antiprismatic geometry and are monodentatically bonded to carboxylate anions. The structural disorder at the aliphatic end of the stearic acid chains was detected in the mixed carboxylates. Within the paper, the structural (dis)similarity with the corresponding lead carboxylates is discussed. The synthesized and characterized mercury carboxylates were applied to describe neo-formed mercury soaps in a model experiment simulating an egg-based paint system.

8.
J Phys Chem B ; 126(2): 503-512, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34994565

RESUMEN

In drug manufacturing, solvent-based methods are used for the crystallization of active pharmaceutical ingredients (APIs). Often, the solvent interacts with the API resulting in the formation of a new solid compound, the solvate. When desolvation occurs upon heating, it might result in the formation of new solid forms with significantly different physicochemical properties. Therefore, in this work, we study the desolvation kinetics by combining in situ powder X-ray diffraction (PXRD), all-atom molecular dynamics (MD) simulations, and macroscopic solid-state reaction kinetics modeling. The fluorobenzene (FB) solvate of Bruton's tyrosine kinase inhibitor Ibrutinib (IBR) was used as a model system. While the macroscopic solid-state modeling provides information about the desolvation kinetics, the MD simulations were used to trace individual FB molecules inside the crystal lattice. The activation energy of confined solvent diffusion, obtained by MD simulations, agrees well with results of the macroscopic solid-state reaction kinetics modeling. In addition, MD simulations provided detailed information about the IBR-FB interactions at the nanoscale. The mechanism revealed is that the solvent molecules diffusion, controlled by distinct open-close gating conformational changes of the drug, triggers the desolvation throughout the crystal lattice.


Asunto(s)
Preparaciones Farmacéuticas , Cristalización , Interacciones Farmacológicas , Solventes/química , Difracción de Rayos X
9.
Molecules ; 26(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34641595

RESUMEN

Spikelets NMR spectra are very popular as they enable the shortening of experimental time and give the possibility to obtain required NMR parameters for nuclei with ultrawide NMR patterns. Unfortunately, these resulted ssNMR spectra cannot be fitted directly in common software. For this reason, we developed UWNMRSpectralShape (USS) software which transforms spikelets NMR patterns into single continuous lines. Subsequently, these reconstructed spectral envelopes of the (Q)CPMG spikelets patterns can be loaded into common NMR software and automatically fitted, independently of experimental settings. This allows the quadrupole and chemical shift parameters to be accurately determined. Moreover, it makes fitting of spikelets NMR spectra exact, fast and straightforward.

10.
Inorg Chem ; 59(19): 13933-13941, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32935544

RESUMEN

The formation of a polycrystalline 3D gallium-imidazole framework (MOF) was closely studied in three steps using ssNMR, XRPD, and TGA. In all steps, the reaction products show relatively high temperature stability up to 500 °C. The final product was examined by structural analysis using NMR crystallography combined with TG and BET analyses, which enabled a detailed characterization of the polycrystalline MOF system on the atomic-resolution level. 71Ga ssNMR spectra provided valuable structural information on the coexistence of several distinct gallium species, including a tunable liquid phase. Moreover, using an NMR crystallography approach, two structurally asymmetric units of Ga(Im6)6- incorporated into the thermally stable polycrystalline 3D matrix were identified. Prepared polycrystalline MOF material with polymorphic gallium species is promising for use in catalytic processes.

11.
ACS Appl Mater Interfaces ; 12(42): 47447-47456, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32975402

RESUMEN

Metal-organic frameworks (MOFs), owing to their unique architecture, attract consistent attention in the design of high-performance Li battery materials. Here, we report a new category of ion-conducting crystalline materials for all-solid-state electrolytes based on an MIL53(Al) framework featuring a superchaotropic metallacarborane (Li+CoD-) salt and present the first quantitative data on Li+ ion sites, local dynamics, chemical exchange, and the formation of charge-transfer pathways. We used multinuclear solid-state nuclear magnetic resonance (ss-NMR) spectroscopy to examine the mechanism of ionic conductivity at atomic resolution and to elucidate order-disorder processes, framework-ion interactions, and framework breathing during the loading of Li+CoD- species and transfer of Li+ ions. In this way, the MIL53(Al)@LiCoD framework was found to adopt an open-pore conformation accompanied by a minor fraction of narrow-pore channels. The inserted Li+ ions have two states (free and bound), which both exhibit extensive motions. Both types of Li+ ions form mutually communicating chains, which are large enough to enable efficient long-range charge transfer and macroscopic conductivity. The superchaotropic anions undergo high-amplitude uniaxial rotation motions supporting the transfer of Li+ cations along them, while the fluctuations of MOF aromatic linkers support the penetration of Li+ through the channel walls. Our findings provide a detailed atomic-resolution insight into the mechanism of ionic conductivity and thus have significant implications for the design of the next generation of energy-related materials.

12.
J Appl Crystallogr ; 53(Pt 3): 841-847, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32684899

RESUMEN

This article describes new developments in the CrystalCMP software. In particular, an automatic procedure for comparison of molecular packing is presented. The key components are an automated procedure for fragment selection and the replacement of the angle calculation by root-mean-square deviation of atomic positions. The procedure was tested on a large data set taken from the Cambridge Structural Database (CSD) and the results of all the comparisons were saved as an HTML page, which is freely available on the web. The analysis of the results allowed estimation of the threshold for identification of identical packing and allowed duplicates and entries with potentially incorrect space groups to be found in the CSD.

13.
Inorg Chem ; 59(8): 5538-5545, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32275140

RESUMEN

Porous metal-organic frameworks (MOFs) have excellent characteristics for the adsorptive removal of environmental pollutants. Herein, we introduce a new series of highly stable MOFs constructed using Fe3+ and Al3+ metal ions and bisphosphinate linkers. The isoreticular design leads to ICR-2, ICR-6, and ICR-7 MOFs with a honeycomb arrangement of linear pores, surface areas up to 1360 m2 g-1, and high solvothermal stabilities. In most cases, their sorption capacity is retained even after 24 h of reflux in water. The choice of the linkers allows for fine-tuning of the pore sizes and the chemical nature of the pores. This feature can be utilized for the optimization of host-guest interactions between molecules and the pore walls. Water pollution by various endocrine disrupting chemicals has been considered a global threat to public health. In this work, we prove that the chemical stability and hydrophobic nature of the synthesized series of MOFs result in the remarkable sorption properties of these materials for endocrine disruptor bisphenol A.

14.
Acta Crystallogr C Struct Chem ; 75(Pt 12): 1617-1627, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31802751

RESUMEN

The new aminocoumarin derivatives 3-[1-(3-hydroxyanilino)ethylidene]-3H-chromene-2,4-dione, (1), 3-[1-(4-hydroxyanilino)ethylidene]-3H-chromene-2,4-dione, (2), and 3-[1-(2-hydroxyanilino)ethylidene]-3H-chromene-2,4-dione, (3), all C17H13NO4, were synthesized by reacting an equimolar amount of 3-acetyl-4-hydroxycoumarin and the corresponding aminophenol in absolute ethanol. Structural and spectroscopic analysis of these phases revealed that derivatives (1) and (2) are isomers of previously reported (3) [Brahmia et al. (2013). Acta Cryst. E69, o1296]. The crystal structures of meta derivative (1) and para derivative (2) were ab initio determined from powder X-ray diffraction data using the direct-space approach. Both (1) and (2) adopt the orthorhombic space group P212121. These isomers show hydrogen bonds and rich π-π stacking, together with π...H interactions, which are built by conjugated systems of coumarin and phenol rings. In the crystalline lattice, the packing of (1) and (3) are mainly stabilized through O-H...O hydrogen bonding between neighbouring coumarin molecules, while hydrogen bonds between coumarin and water molecules build the stable crystal structure of derivative (2). A big similarity in the skeletons of the IR spectra of these isomers was noticed. Derivative (2) exhibits two weak bands which were not present in the spectra of the other two derivatives, at 2370 and 2948 cm-1, which can be assigned to the O-H vibrations of the solvent (H2O) trapped in the structure of (2). These aminocoumarin derivatives display absorption maxima in the visible region, attributed to π-π delocalization involving the whole electronic system of the compounds with a considerable charge-transfer character originating from the aminophenyl ring and pointing towards the coumarin system which is characterized by a high electron-accepting character. Additionally, the isolated molecular ground-state geometries were optimized at the PBE0/TZP level and the electronic properties, molecular electrostatic potential and Hirshfeld charges were determined.

15.
Dalton Trans ; 48(33): 12531-12540, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31364630

RESUMEN

Long-chain lead carboxylates, on the one hand, represent compounds for versatile industrial applications in high-tech industries, while on the other hand, they are predominant constituents of secondary products of saponification of paint layers in works of art. Affecting significantly the appearance and stability of painted works of art, saponification is one of the most serious problems of preservation of cultural heritage objects. Despite their versatility as well as hazardousness, there is a paucity of single-crystal X-ray structures of long-chain carboxylates, due to difficulties in preparing single crystals of sufficient quality. We studied the crystal structure of polycrystalline mixed lead carboxylates of the formula Pb(C16)2-x(C18)x (x = 0; 0.25; 0.5; 0.75; 1; 1.5; 2), where C16 and C18 stand for hexadecanoate (palmitate) and octadecanoate (stearate) anions, respectively, by complementary X-ray powder diffraction (XRPD) and 13C and 207Pb solid state NMR (ssNMR). Mixed lead carboxylates consisting of hexadecanoate and octadecanoate are relevant to the formation of soaps in egg yolk and/or oil-based binders combined with lead-based pigments, which belong to the most common pigments in history. Combining an advanced XRPD analysis with a comparative analysis of ssNMR parameters, we described the structural model of mixed lead carboxylates. We revealed that both hexadecanoate (C16) and octadecanoate (C18) chains are present in one crystal structure, creating the statistical disorder at the ethyl end of the chains. Based on the 207Pb ssNMR spectra, we revealed two distinct local environments of lead atoms, corresponding to the symmetrically (i.e., (C16)-Pb-(C16) and/or (C18)-Pb-(C18) and asymmetrically (i.e., (C16)-Pb-(C18)) substituted lead carboxylates, and we confirmed the formation of a holo-directed structure for both the structural motifs. The structural models were applied to identify the neo-formed crystalline lead soap in a model experiment simulating the simplified historic paint consisting of the pigment lead tin yellow type I and emulsion binder prepared from egg yolk and linseed oil. We identified the secondary product as a mixed lead carboxylate of the composition Pb(C16)(C18).

16.
Sci Rep ; 9(1): 9156, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235777

RESUMEN

As a metastable phase, vaterite is involved in the first step of crystallization of several carbonate-forming systems including the two stable polymorphs calcite and aragonite. Its complete structural determination would consequently shed important light to understand scaling formation and biomineralization processes. While vaterite's hexagonal substructure (a0 ~ 4.1 Å and c0 ~ 8.5 Å) and the organization of the carbonate groups within a single layer is known, conflicting interpretations regarding the stacking sequence remain and preclude the complete understanding of the structure. To resolve the ambiguities, we performed precession electron diffraction tomography (PEDT) to collect single crystal data from 100 K to the ambient temperature. The structure was solved ab initio and described over all the temperature range using a unified modulated structure model in the superspace group C12/c1(α0γ)00 with a = a0 = 4.086(3) Å, b = [Formula: see text]a0 = 7.089(9) Å, c = c0 = 8.439(9) Å, α = ß = γ = 90° and q = [Formula: see text]a* + γc*. At 100 K the model presents a pure 4-layer stacking sequence with γ = [Formula: see text] whereas at the ambient temperature, ordered stacking faults are introduced leading to γ < [Formula: see text]. The model was refined against PEDT data using the dynamical refinement procedure including modulation and twinning as well as against x-ray powder data by the Rietveld refinement.

17.
Acta Chim Slov ; 66(3): 603-613, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33855519

RESUMEN

The novel cobalt(II) complex, trans-dipyridinebis(3-acetyl-2-oxo-2H-chromen-4-olato)cobalt(II), was synthesized in ethanol. The coordination sphere of the cobalt cation was elucidated using single-crystal X-ray diffraction analysis and spectroscopic techniques (FT-IR, UV-Visible and fluorescence). Hirshfeld surface analysis indicates that hydrogen bond interactions, such as C-H···O hydrogen bonding between the oxygen of lactone group and the pyridine appear as a primary interaction between the complex's molecules. The presence of π- π stacking was evident by the shape index and curvature. Analysis of 2D fingerprint plots confirm that intermolecular H···H, C···H and H···O interactions are well dominated and are in complement to the Hirshfeld surface. The metal-ligand coordination strongly influences the fluorescence intensity (the fluorescence quenching) and the offset of the emission wavelength. The metal complex was monitored for antimicrobial activity using the disk diffusion method and showed significant activity compared to the coumarin ligand.

18.
Artículo en Inglés | MEDLINE | ID: mdl-32165766

RESUMEN

The thermodynamic properties, phase behavior, and kinetics of polymorphic transformations of racemic (DL-) and enantiopure (L-) menthol were studied using a combination of advanced experimental techniques, including static vapor pressure measurements, adiabatic calorimetry, Tian-Calvet calorimetry, differential scanning calorimetry (DSC), and variable-temperature X-ray powder diffraction. Several concomitant polymorphs (α, ß, γ, and δ forms) were observed and studied. A continuous transformation to the stable α form was detected by DSC and monitored in detail using X-ray powder diffraction. A long-term coexistence of the stable crystalline form with the liquid phase was observed. The vapor pressure measurements of both compounds were performed using two static apparatus over a temperature range from 274 K to 363 K. Condensed-phase heat capacities were measured by adiabatic and Tian-Calvet calorimetry in the wide temperature interval from 5 K to 368 K. Experimental data of L- and DL-menthol are compared mutually as well as with available literature results. The thermodynamic functions of crystalline and liquid L-menthol between 0 K and 370 K were calculated from the calorimetric results. The thermodynamic properties in the ideal-gas state were obtained by combining statistical thermodynamics and quantum chemical calculations based on a thorough conformational analysis. Calculated ideal-gas heat capacities and experimental data on vapor pressure and condensed-phase heat capacity were treated simultaneously to obtain a consistent thermodynamic description. Based on the obtained results, the phase diagrams of L-menthol and DL-menthol were suggested.

19.
Inorg Chem ; 57(12): 7428-7437, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29869504

RESUMEN

Lewis acids and Lewis adducts are widely used in the chemical industry because of their high catalytic activity. Their precise geometrical description and understanding of their electronic structure are a crucial step for targeted synthesis and specific use. Herein, we present an experimental/computational strategy based on a solid-state NMR crystallographic approach allowing for detailed structural characterization of a wide range of organoaluminum compounds considerably differing in their chemical constitution. In particular, we focus on the precise measurement and subsequent quantum-chemical analysis of many different 27Al NMR resonances in the extremely broad range of quadrupolar coupling constants from 1 to 50 MHz. In this regard, we have optimized an experimental strategy combining a range of static as well as magic angle spinning experiments allowing reliable detection of the entire set of aluminum sites present in trimesitylaluminum (AlMes3) reaction products. In this way, we have spectroscopically resolved six different products in the resulting polycrystalline mixture. All 27Al NMR resonances are precisely recorded and comprehensively analyzed by a quantum-chemical approach. Interestingly, in some cases the recorded 27Al solid-state NMR spectra show unexpected quadrupolar coupling constant values reaching up to ca. 30 MHz, which are attributed to tetra-coordinated aluminum species (Lewis adducts with trigonal pyramidal geometry). The cause of this unusual behavior is explored by analyzing the natural bond orbitals and complexation energies. The linear correlation between the quadrupolar coupling constant value and the nature of bonds in the Lewis adducts is revealed. Moreover, the 27Al NMR data are shown to be sensitive to the geometry of the tetra-coordinated organoaluminum species. Our findings thus provide a viable approach for the direct identification of Lewis acids and Lewis adducts, not only in the investigated multicomponent organoaluminum compounds but also in inorganic zeolites featuring catalytically active trigonal (AlIII) and strongly perturbed AlIV sites.

20.
Angew Chem Int Ed Engl ; 57(18): 5016-5019, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29451728

RESUMEN

Metal-organic frameworks (MOFs) are a chemically and topologically diverse family of materials composed of inorganic nodes and organic linkers bound together by coordination bonds. Presented here are two significant innovations in this field. The first is the use of a new coordination group, phenylene-1,4-bis(methylphosphinic acid) (PBPA), a phosphinic acid analogue of the commonly used terephtalic acid. Use of this new linker group leads to the formation of a hydrothermally stable and permanently porous MOF structure. The second innovation is the application of electron-diffraction tomography, coupled with dynamic refinement of the EDT data, to the elucidation of the structure of the new material, including the localization of hydrogen atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...