Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 112(2): 023902, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24484014

RESUMEN

Trapping of mesoscopic particles by optical forces usually relies on the gradient force, whereby particles are attracted into optical wells formed by landscaping the intensity of an optical field. This is most often achieved by optical Gaussian beams, interference patterns, general phase contrast methods, or other mechanisms. Hence, although the simultaneous trapping of several hundreds of particles can be achieved, these particles remain mostly independent with negligible interaction. Optical matter, however, relies on close packing and binding forces, with fundamentally different electrodynamic properties. In this Letter, we build ensembles of optically bound particles to realize a reflective surface that can be used to image an object or to focus a light beam. To our knowledge, this is the first experimental proof of the creation of a mirror by optical matter, and represents an important step toward the realization of a laser-trapped mirror (LTM) in space. From a theoretical point of view, optically bound close packing requires an exact solver of Maxwell's equations in order to precisely compute the field scattered by the collection of particles. Such rigorous calculations have been developed and are used here to study the focusing and resolving power of an LTM.

2.
Opt Express ; 15(10): 6075-86, 2007 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19546912

RESUMEN

An array of high numerical aperture parabolic micromirrors (NA = 0.96) is used to generate multiple optical tweezers and to trap micron-sized dielectric particles in three dimensions within a fluidic device. The array of micromirrors allows generating arbitrarily large numbers of 3D traps, since the whole trapping area is not restricted by the field-of-view of the high-NA microscope objectives used in traditional tweezers arrangements. Trapping efficiencies of Q(max) r approximately = 0.22, comparable to those of conventional tweezers, have been measured. Moreover, individual fluorescence light from all the trapped particles can be collected simultaneously with the high-NA of the micromirrors. This is demonstrated experimentally by capturing more than 100 fluorescent micro-beads in a fluidic environment. Micromirrors may easily be integrated in microfluidic devices, offering a simple and very efficient solution for miniaturized optical traps in lab-on-a-chip devices.

3.
Opt Express ; 14(4): 1685-99, 2006 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19503495

RESUMEN

We have studied the transverse and axial equilibrium positions of dielectric micro-spheres trapped in a single-beam gradient optical trap and exposed to an increasing fluid flow transverse to the trapping beam axis. It is demonstrated that the axial equilibrium position of a trapped micro-sphere is a function of its transverse position in the trapping beam. Moreover, although the applied drag-force acts perpendicularly to the beam axis, reaching a certain distance r(0) from the beam axis (r(0)/a approximately 0.6, a being the sphere radius) the particle escapes the trap due to a breaking axial equilibrium before the actual maximum transverse trapping force is reached. The comparison between a theoretical model and the measurements shows that neglecting these axial equilibrium considerations leads to a theoretical overestimation in the maximal optical transverse trapping forces of up to 50%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...