Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38660563

RESUMEN

The MYC oncogene was previously shown to induce mitotic spindle defects, chromosome instability, and reliance on the microtubule-associated protein TPX2 to survive, but how TPX2 levels affect spindle morphology in cancer cells has not previously been examined in detail. We show that breast cancer cell lines expressing high levels of MYC and TPX2 possess shorter spindles with increased TPX2 localization at spindle poles. A similar effect was observed in non-transformed human RPE-1 cells compared to a tumor cell line (HeLa) that overexpresses MYC . These results demonstrate that TPX2 alters spindle length and morphology in cancer cells, which may contribute their ability to divide despite MYC-induced mitotic stress.

2.
Cell Rep ; 30(10): 3368-3382.e7, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160543

RESUMEN

Tumors that overexpress the MYC oncogene are frequently aneuploid, a state associated with highly aggressive cancers and tumor evolution. However, how MYC causes aneuploidy is not well understood. Here, we show that MYC overexpression induces mitotic spindle assembly defects and chromosomal instability (CIN) through effects on microtubule nucleation and organization. Attenuating MYC expression reverses mitotic defects, even in established tumor cell lines, indicating an ongoing role for MYC in CIN. MYC reprograms mitotic gene expression, and we identify TPX2 to be permissive for spindle assembly in MYC-high cells. TPX2 depletion blocks mitotic progression, induces cell death, and prevents tumor growth. Further elevating TPX2 expression reduces mitotic defects in MYC-high cells. MYC and TPX2 expression may be useful biomarkers to stratify patients for anti-mitotic therapies. Our studies implicate MYC as a regulator of mitosis and suggest that blocking MYC activity can attenuate the emergence of CIN and tumor evolution.


Asunto(s)
Mitosis , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Línea Celular Tumoral , Inestabilidad Cromosómica , Citoprotección , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Mutaciones Letales Sintéticas
3.
Nat Med ; 25(1): 111-118, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478424

RESUMEN

Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance.


Asunto(s)
Aurora Quinasa A/metabolismo , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Recuento de Células , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Neoplasia Residual/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología
4.
Mol Cell ; 67(6): 947-961.e5, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28890336

RESUMEN

The Hsp90 system in the eukaryotic cytosol is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function. Although progress has been made regarding the underlying biochemical mechanisms, how co-chaperones influence Hsp90 client proteins in vivo has remained elusive. By investigating the effect of 12 Hsp90 co-chaperones on the activity of different client proteins in yeast, we find that deletion of co-chaperones can have a neutral or negative effect on client activity but can also lead to more active clients. Only a few co-chaperones are active on all clients studied. Closely related clients and even point mutants can depend on different co-chaperones. These effects are direct because differences in client-co-chaperone interactions can be reconstituted in vitro. Interestingly, some co-chaperones affect client conformation in vivo. Thus, co-chaperones adapt the Hsp90 cycle to the requirements of the client proteins, ensuring optimal activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Plasticidad de la Célula , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Genotipo , Proteínas HSP90 de Choque Térmico/genética , Mutación , Proteína Oncogénica pp60(v-src)/genética , Proteína Oncogénica pp60(v-src)/metabolismo , Fenotipo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
5.
Nat Med ; 22(11): 1321-1329, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27775705

RESUMEN

Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.


Asunto(s)
Carcinoma Ductal de Mama/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Humanos , Etiquetado Corte-Fin in Situ , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Ratones Transgénicos , Microscopía Fluorescente , Pronóstico , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Proc Natl Acad Sci U S A ; 110(40): E3780-9, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043785

RESUMEN

The small heat shock protein αB-crystallin is an oligomeric molecular chaperone that binds aggregation-prone proteins. As a component of the proteostasis system, it is associated with cataract, neurodegenerative diseases, and myopathies. The structural determinants for the regulation of its chaperone function are still largely elusive. Combining different experimental approaches, we show that phosphorylation-induced destabilization of intersubunit interactions mediated by the N-terminal domain (NTD) results in the remodeling of the oligomer ensemble with an increase in smaller, activated species, predominantly 12-mers and 6-mers. Their 3D structures determined by cryo-electron microscopy and biochemical analyses reveal that the NTD in these species gains flexibility and solvent accessibility. These modulated properties are accompanied by an increase in chaperone activity in vivo and in vitro and a more efficient cooperation with the heat shock protein 70 system in client folding. Thus, the modulation of the structural flexibility of the NTD, as described here for phosphorylation, appears to regulate the chaperone activity of αB-crystallin rendering the NTD a conformational sensor for nonnative proteins.


Asunto(s)
Modelos Moleculares , Chaperonas Moleculares/química , Conformación Proteica , Cadena B de alfa-Cristalina/química , Cromatografía en Gel , Clonación Molecular , Microscopía por Crioelectrón , Electroforesis en Gel de Poliacrilamida , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Chaperonas Moleculares/metabolismo , Fosforilación , Colorantes de Rosanilina , Cadena B de alfa-Cristalina/metabolismo
7.
Trends Biochem Sci ; 38(5): 253-62, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23507089

RESUMEN

The heat shock protein (Hsp)90 chaperone machinery regulates the activity of hundreds of client proteins in the eukaryotic cytosol. It undergoes large conformational changes between states that are similar in energy. These transitions are rate-limiting for the ATPase cycle. It has become evident that several of the many Hsp90 co-chaperones affect the conformational equilibrium by stabilizing specific intermediate states. Consequently, there is an ordered progression of different co-chaperones during the conformational cycle. Asymmetric complexes containing two different co-chaperones may be important for the processing of the client protein, although our understanding of this aspect, as well as the details of the interaction of Hsp90 with client proteins, is still in its infancy.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Proteínas HSP90 de Choque Térmico/química , Humanos , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional
8.
J Mol Biol ; 425(1): 144-55, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23103206

RESUMEN

The tumor suppressor protein p53 is often referred to as the guardian of the genome. In the past, controversial findings have been presented for the role of the C-terminal regulatory domain (RD) of p53 as both a negative regulator and a positive regulator of p53 activity. However, the underlying mechanism remained enigmatic. To understand the function of the RD and of a dominant phosphorylation site within the RD, we analyzed p53 variants in vivo and in vitro. Our experiments revealed, surprisingly, that the p53 RD of one subunit interacts with the DNA binding domain of an adjacent subunit in the tetramer. This leads to the formation of intersubunit contacts that stabilize the tetrameric state of p53 and enhance its transcriptional activity in a cooperative manner. These effects are further modulated by phosphorylation of a conserved serine within the RD.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Fosforilación , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Activación Transcripcional , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
9.
Nat Struct Mol Biol ; 18(10): 1086-93, 2011 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-21892170

RESUMEN

In eukaryotes, the essential dimeric molecular chaperone Hsp90 is required for the activation and maturation of specific substrates such as steroid hormone receptors, tyrosine kinases and transcription factors. Hsp90 is involved in the establishment of cancer and has become an attractive target for drug design. Here we present a structural characterization of the complex between Hsp90 and the tumor suppressor p53, a key mediator of apoptosis whose structural integrity is crucial for cell-cycle control. Using biophysical methods, we show that the human p53 DNA-binding domain interacts with multiple domains of yeast Hsp90. p53 binds to the Hsp90 C-terminal domain in its native-like state in a charge-dependent manner, but it also associates weakly with binding sites in the middle and the N-terminal domains. The fine-tuned interplay between several Hsp90 domains provides the interactions required for efficient chaperoning of p53.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , Proteínas HSP90 de Choque Térmico/química , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Proteína p53 Supresora de Tumor/química
10.
FEBS Lett ; 582(11): 1587-92, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18406354

RESUMEN

Intranuclear fibrils due to poly-alanine expansions in the N-terminal domain of the poly(A) binding protein PABPN1 correlate with the disease oculopharyngeal muscular dystrophy (OPMD). For monitoring fibril formation by fluorescence and real-time NMR spectroscopy, tryptophans were introduced either into the middle or C-terminal of the poly-alanine segment. The kinetics of fibril formation which were monitored by fluorescence spectroscopy were matched by real-time NMR kinetics. Our results show that fibril formation is concomitant with the burial of the tryptophans in the fibrillar core. Since no soluble pre-fibrillar intermediate(s) was detected, fibril formation of this domain may be regarded as a two state conversion from an unfolded soluble into folded insoluble species.


Asunto(s)
Amiloide/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Proteína II de Unión a Poli(A)/metabolismo , Secuencias Repetitivas de Aminoácido , Triptófano/análisis , Alanina/química , Alanina/genética , Secuencia de Aminoácidos , Amiloide/química , Fluorescencia , Humanos , Datos de Secuencia Molecular , Proteína II de Unión a Poli(A)/química , Proteína II de Unión a Poli(A)/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...