Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Cell Biosci ; 13(1): 205, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37941042

RESUMEN

BACKGROUND: Lung cancer, the most common cause of cancer-related mortality worldwide, is predominantly associated with advanced/metastatic disease. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) in tumor microenvironment is known to be essential for regulating tumor progression and metastasis, but the underlying mechanisms, particularly the role of RNA-binding protein Musashi-2 (MSI2) in CAFs in promoting non-small cell lung cancer (NSCLC) invasiveness and metastatic spread, remain obscure. METHODS: Genomic and proteomic database analyses were performed to evaluate the potential clinical significance of MSI2 in NSCLC tumor and stromal clinical specimens. Molecular approaches were used to modify MSI2 in CAFs and determine its functional role in NSCLC cell motility in vitro using 2D and 3D models, and in metastasis in a xenograft mouse model using live-cell imaging. RESULTS: MSI2, both gene and protein, is upregulated in NSCLC tissues and is associated with poor prognosis and high metastatic risk in patients. Interestingly, MSI2 is also upregulated in NSCLC stroma and activated fibroblasts, including CAFs. Depletion of MSI2 in CAFs by CRISPR-Cas9 strongly inhibits NSCLC cell migration and invasion in vitro, and attenuates local and distant metastatic spread of NSCLC cells in vivo. The crosstalk between CAFs and NSCLC cells occurs via paracrine signaling, which is regulated by MSI2 in CAFs via IL-6. The secreted IL-6 promotes epithelial-mesenchymal transition in NSCLC cells, which drives metastasis. CONCLUSION: Our findings reveal for the first time that MSI2 in CAFs is important in CAF-mediated NSCLC cell invasiveness and metastasis via IL-6 paracrine signaling. Therefore, targeting the MSI2/IL-6 axis in CAFs could be effective in combating NSCLC metastasis.

2.
Cell Commun Signal ; 21(1): 283, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828578

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by an accumulation of immature leukemic myeloblasts initiating from leukemic stem cells (LSCs)-the subpopulation that is also considered the root cause of chemotherapy resistance. Repurposing cardiac glycosides to treat cancers has gained increasing attention and supporting evidence, but how cardiac glycosides effectively target LSCs, e.g., whether it involves cell differentiation, remains largely unexplored. METHODS: Digoxin, a user-designed digitoxigenin-α-L-rhamnoside (D6-MA), and ouabain were tested against various human AML-derived cells with different maturation phenotypes. Herein, we established two study models to specifically determine the effects of cardiac glycosides on LSC death and differentiation-one allowed change in dynamics of LSCs and leukemic progenitor cells (LPCs), while another maintained their undifferentiated status. Regulatory mechanisms underlying cardiac glycoside-induced cytotoxicity were investigated and linked to cell cycle distribution and apoptotic machinery. RESULTS: Primitive AML cells containing CD34+ LSCs/LPCs were very responsive to nanomolar concentrations of cardiac glycosides, with ouabain showing the greatest efficiency. Ouabain preferentially induces caspase-dependent apoptosis in LSCs, independent of its cell differentiation status, as evidenced by (i) the tremendous induction of apoptosis by ouabain in AML cells that acquired less than 15% differentiation and (ii) the higher rate of apoptosis in enriched LSCs than in LPCs. We sorted LSCs and LPCs according to their cell cycle distribution into G0/G1, S, and G2/M cells and revealed that G0/G1 cells in LSCs, which was its major subpopulation, were the top ouabain responders, indicating that the difference in ouabain sensitivity between LSCs and LPCs involved both distinct cell cycle distribution and intrinsic apoptosis regulatory mechanisms. Further, Mcl-1 and c-Myc, which were differentially expressed in LSCs and LPCs, were found to be the key apoptosis mediators that determined ouabain sensitivity in AML cells. Ouabain induces a more rapid loss of Mcl-1 and c-Myc in LSCs than in LPCs via the mechanisms that in part involve an inhibition of Mcl-1 protein synthesis and an induction of c-Myc degradation. CONCLUSIONS: Our data provide new insight for repurposing cardiac glycosides for the treatment of relapsed/refractory AML through targeting LSCs via distinct cell cycle and apoptosis machinery. Video Abstract.


Asunto(s)
Glicósidos Cardíacos , Leucemia Mieloide Aguda , Humanos , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/metabolismo , Glicósidos Cardíacos/uso terapéutico , Ouabaína/farmacología , Ouabaína/metabolismo , Ouabaína/uso terapéutico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/patología , Diferenciación Celular , Células Madre/metabolismo , Células Madre Neoplásicas/metabolismo , Apoptosis
3.
Lung Cancer ; 181: 107258, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245409

RESUMEN

OBJECTIVES: A cure for cancer is out of reach for most patients due to chemoresistance. Cancer-associated fibroblasts (CAFs) play a vital role in cancer chemoresistance, but detailed understanding of the process particularly in chemoresistant lung cancer is lacking. In this study, we investigated programmed death-ligand 1 (PDL-1) as a potential biomarker for CAF-induced chemoresistance and evaluated its role and the underlying mechanisms of chemoresistance in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: A systemic search of gene expression profiles of multiple tissues in NSCLC was carried out to determine the expression intensities of traditional fibroblast biomarkers and CAF-secreted protumorigenic cytokines. PDL-1 expression in CAFs was analyzed by ELISA, Western blotting, and flow cytometry. Human cytokine array was used to identify specific cytokines secreted from CAFs. Role of PDL-1 in NSCLC chemoresistance was assessed using CRISPR/Cas9 knockdown and various functional assays including MTT, cell invasion, sphere formation, and cell apoptosis. In vivo experiments were conducted using a co-implantation xenograft mouse model with live cell imaging and immunohistochemistry. RESULTS: We demonstrated that chemotherapy-stimulated CAFs promoted tumorigenic and stem cell-like properties of NSCLC cells, which contribute to their chemoresistance. Subsequently, we revealed that PDL-1 expression is upregulated in chemotherapy-treated CAFs and is associated with poor prognosis. Silencing PDL-1 expression suppressed CAFs' ability to promote stem cell-like properties and invasiveness of lung cancer cells, favoring chemoresistance. Mechanistically, an upregulation of PDL-1 in chemotherapy-treated CAFs led to an increase in hepatocyte growth factor (HGF) secretion, which stimulates cancer progression, cell invasion, and stemness of lung cancer cells, while inhibiting apoptosis. CONCLUSION: Our results show that PDL-1-positive CAFs modulate stem cell-like properties of NSCLC cells by secreting elevated HGF, thereby promoting chemoresistance. Our finding supports PDL-1 in CAFs as a chemotherapy response biomarker and as a drug delivery and therapeutic target for chemoresistant NSCLC.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Fibroblastos Asociados al Cáncer/metabolismo , Resistencia a Antineoplásicos , Fibroblastos , Citocinas/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular
4.
Sci Rep ; 13(1): 8220, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217524

RESUMEN

Tetrazolium reduction and resazurin assays are the mainstay of routine in vitro toxicity batteries. However, potentially erroneous characterization of cytotoxicity and cell proliferation can arise if verification of baseline interaction of test article with method employed is neglected. The current investigation aimed to demonstrate how interpretation of results from several standard cytotoxicity and proliferation assays vary in dependence on contributions from the pentose phosphate pathway (PPP). Non-tumorigenic Beas-2B cells were treated with graded concentrations of benzo[a]pyrene (B[a]P) for 24 and 48 h prior to cytotoxicity and proliferation assessment with commonly used MTT, MTS, WST1, and Alamar Blue assays. B[a]P caused enhanced metabolism of each dye assessed despite reductions in mitochondrial membrane potential and was reversed by 6-aminonicotinamide (6AN)-a glucose-6-phosphate dehydrogenase inhibitor. These results demonstrate differential sensitivity of standard cytotoxicity assessments on the PPP, thus (1) decoupling "mitochondrial activity" as an interpretation of cellular formazan and Alamar Blue metabolism, and (2) demonstrating the implicit requirement for investigators to sufficiently verify interaction of these methods in routine cytotoxicity and proliferation characterization. The nuances of method-specific extramitochondrial metabolism must be scrutinized to properly qualify specific endpoints employed, particularly under the circumstances of metabolic reprogramming.


Asunto(s)
6-Aminonicotinamida , Vía de Pentosa Fosfato
5.
Exp Hematol Oncol ; 11(1): 41, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831838

RESUMEN

Cancer stem cells (CSCs) have been identified in multiple myeloma (MM) and are widely regarded as a key driver of MM initiation and progression. E-cadherin, in addition to its established role as a marker for epithelial-mesenchymal transition, also plays critical roles in controlling the aggressive behaviors of various tumor cells. Here, we show that depletion of E-cadherin in MM cells remarkably inhibited cell proliferation and cell cycle progression, in part through the decreased prosurvival CD138 and Bcl-2 and the inactivated Akt and MAPK pathways. CSC features, including the ability of the cells to form clonogenic colonies indicative of self-renewal and side population, were greatly suppressed upon the depletion of E-cadherin and subsequent loss of SOX9 stem-cell factor. We further provide evidence that SOX9 is a downstream target of E-cadherin-mediated CSC growth and self-renewal-ectopic re-expression of SOX9 in E-cadherin-depleted cells rescued its inhibitory effects on CSC-like properties and survival signaling. Collectively, our findings unveil a novel regulatory mechanism of MM CSCs via the E-cadherin/SOX9 axis, which could be important in understanding the long-term cell survival and outgrowth that leads to relapsed/refractory MM.

6.
Biosensors (Basel) ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34677320

RESUMEN

Cytokines are a large group of small proteins secreted by immune and non-immune cells in response to external stimuli. Much attention has been given to the application of cytokines' detection in early disease diagnosis/monitoring and therapeutic response assessment. To date, a wide range of assays are available for cytokines detection. However, in specific applications, multiplexed or continuous measurements of cytokines with wearable biosensing devices are highly desirable. For such efforts, various nanomaterials have been extensively investigated due to their extraordinary properties, such as high surface area and controllable particle size and shape, which leads to their tunable optical emission, electrical, and magnetic properties. Different types of nanomaterials such as noble metal, metal oxide, and carbon nanoparticles have been explored for various biosensing applications. Advances in nanomaterial synthesis and device development have led to significant progress in pushing the limit of cytokine detection. This article reviews currently used methods for cytokines detection and new nanotechnology-based biosensors for ultrasensitive cytokine detection.


Asunto(s)
Técnicas Biosensibles , Citocinas , Diseño de Equipo , Humanos , Magnetismo , Nanoestructuras , Nanotecnología
7.
Appl Sci (Basel) ; 11(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34386269

RESUMEN

Ovarian cancer (OC) is among the top gynecologic cancers in the US with a death tally of 13,940 in the past year alone. Gallic acid (GA) is a natural compound with pharmacological benefits. In this research, the role of GA on cell proliferation, cell apoptosis, cell cycle-related protein expression was explored in OC cell lines OVCAR-3 and A2780/CP70. After 24,48 and 72 h of GA treatment, the IC50 values in OVCAR-3 cells were 22.14 ± 0.45, 20.36 ± 0.18, 15.13 ± 0.53 µM, respectively and in A2780/CP70 cells IC50 values were 33.53 ± 2.64, 27.18 ± 0.22, 22.81 ± 0.56, respectively. Hoechst 33,342 DNA staining and flow cytometry results showed 20 µM GA exposure could significantly accelerate apoptosis in both OC cell lines and the total apoptotic rate increased from 5.34%(control) to 21.42% in OVCAR-3 cells and from 8.01%(control) to 17.69% in A2780/CP70 cells. Western blot analysis revealed that GA stimulated programmed OC cell death via a p53-dependent intrinsic signaling. In addition, GA arrested cell cycle at the S or G2 phase via p53-p21-Cdc2-cyclin B pathway in the same cells. In conclusion, we provide some evidence of the efficacy of GA in ovarian cancer prevention and therapy.

8.
Molecules ; 26(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802884

RESUMEN

Novel therapeutic strategies for ovarian cancer treatment are in critical need due to the chemoresistance and adverse side effects of platinum-based chemotherapy. Theasaponin E1 (TSE1) is an oleanane-type saponin from Camellia sinensis seeds. Its apoptosis-inducing, cell cycle arresting and antiangiogenesis activities against platinum-resistant ovarian cancer cells were elucidated in vitro and using the chicken chorioallantoic membrane (CAM) assay. The results showed that TSE1 had more potent cell growth inhibitory effects on ovarian cancer OVCAR-3 and A2780/CP70 cells than cisplatin and was lower in cytotoxicity to normal ovarian IOSE-364 cells. TSE1 significantly induced OVCAR-3 cell apoptosis via the intrinsic and extrinsic apoptotic pathways, slightly arresting cell cycle at the G2/M phase, and obviously inhibited OVCAR-3 cell migration and angiogenesis with reducing the protein secretion and expression of vascular endothelial growth factor (VEGF). Western bolt assay showed that Serine/threonine Kinase (Akt) signaling related proteins including Ataxia telangiectasia mutated kinase (ATM), Phosphatase and tensin homolog (PTEN), Akt, Mammalian target of rapamycin (mTOR), Ribosome S6 protein kinase (p70S6K) and e IF4E-binding protein 1(4E-BP1) were regulated, and Hypoxia inducible factor-1α (HIF-1α) protein expression was decreased by TSE1 in OVCAR-3 cells. Moreover, TSE1 treatment potently downregulated protein expression of the Notch ligands including Delta-like protein 4 (Dll4) and Jagged1, and reduced the protein level of the intracellular domain (NICD) of Notch1. Combination treatment of TSE1 with the Notch1 signaling inhibitor tert-butyl (2S)-2-[[(2S)-2-[[2-(3,5-difluorophenyl)acetyl]amino]propanoyl]amino]-2-phenylacetate (DAPT), or the Akt signaling inhibitor wortmannin, showed a stronger inhibition toward HIF-1α activation compared with single compound treatment. Taken together, TSE1 might be a potential candidate compound for improving platinum-resistant ovarian cancer treatment via Dll4/Jagged1-Notch1-Akt-HIF-1α axis.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Ácido Oleanólico/análogos & derivados , Neoplasias Ováricas/tratamiento farmacológico , Saponinas/farmacología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Camellia sinensis/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Membrana Corioalantoides/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ácido Oleanólico/farmacología , Fosfohidrolasa PTEN/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Semillas/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
J Exp Clin Cancer Res ; 40(1): 100, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726758

RESUMEN

BACKGROUND: Multiple myeloma (MM) cell motility is a critical step during MM dissemination throughout the body, but how it is regulated remains largely unknown. As hypercalcemia is an important clinical feature of MM, high calcium (Ca2+) and altered Ca2+ signaling could be a key contributing factor to the pathological process. METHODS: Bioinformatics analyses were employed to assess the clinical significance of Ca2+ influx channels in clinical specimens of smoldering and symptomatic MM. Functional and regulatory roles of influx channels and downstream signaling in MM cell migration and invasion were conducted and experimental MM dissemination was examined in a xenograft mouse model using in vivo live imaging and engraftment analysis. RESULTS: Inhibition of TRPM7, ORAI1, and STIM1 influx channels, which are highly expressed in MM patients, and subsequent blockage of Ca2+ influx by CRISPR/Cas9 and small molecule inhibitors, effectively inhibit MM cell migration and invasion, and attenuate the experimental MM dissemination. Mechanistic studies reveal a nutrient sensor O-GlcNAcylation as a downstream regulator of Ca2+ influx that specifically targets cell adhesion molecules. Hyper-O-GlcNAcylation following the inhibition of Ca2+ influx channels induces integrin α4 and integrin ß7 downregulation via ubiquitin-proteasomal degradation and represses the aggressive MM phenotype. CONCLUSIONS: Our findings unveil a novel regulatory mechanism of MM cell motility via Ca2+ influx/O-GlcNAcylation axis that directly targets integrin α4 and integrin ß7, providing mechanistic insights into the pathogenesis and progression of MM and demonstrating potential predictive biomarkers and therapeutic targets for advanced MM.


Asunto(s)
Canales de Calcio/metabolismo , Homeostasis/genética , Mieloma Múltiple/genética , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Humanos , Masculino , Ratones , Transfección
10.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752095

RESUMEN

Ovarian cancer is considered to be one of the most serious malignant tumors in women. Natural compounds have been considered as important sources in the search for new anti-cancer agents. Saponins are characteristic components of tea (Camellia sinensis) flower and have various biological activities, including anti-tumor effects. In this study, a high purity standardized saponin extract, namely Baiye No.1 tea flower saponin (BTFS), which contained Floratheasaponin A and Floratheasaponin D, were isolated from tea (Camellia sinensis cv. Baiye 1) flowers by macroporous resin and preparative liquid chromatography. Then, the component and purity were detected by UPLC-Q-TOF/MS/MS. This high purity BTFS inhibited the proliferation of A2780/CP70 cancer cells dose-dependently, which is evidenced by the inhibition of cell viability, reduction of colony formation ability, and suppression of PCNA protein expression. Further research found BTFS induced S phase cell cycle arrest by up-regulating p21 proteins expression and down-regulating Cyclin A2, CDK2, and Cdc25A protein expression. Furthermore, BTFS caused DNA damage and activated the ATM-Chk2 signaling pathway to block cell cycle progression. Moreover, BTFS trigged both extrinsic and intrinsic apoptosis-BTFS up-regulated the expression of death receptor pathway-related proteins DR5, Fas, and FADD and increased the ratio of pro-apoptotic/anti-apoptotic proteins of the Bcl-2 family. BTFS-induced apoptosis seems to be related to the AKT-MDM2-p53 signaling pathway. In summary, our results demonstrate that BTFS has the potential to be used as a nutraceutical for the prevention and treatment of ovarian cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Camellia sinensis/química , Extractos Vegetales/química , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Camellia sinensis/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclina A2/genética , Ciclina A2/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Flores/química , Flores/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Saponinas/química , Saponinas/aislamiento & purificación , Proteína p53 Supresora de Tumor/metabolismo
11.
Part Fibre Toxicol ; 17(1): 40, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787867

RESUMEN

BACKGROUND: Engineered nanomaterials are increasingly being incorporated into synthetic materials as fillers and additives. The potential pathological effects of end-of-lifecycle recycling and disposal of virgin and nano-enabled composites have not been adequately addressed, particularly following incineration. The current investigation aims to characterize the cytotoxicity of incinerated virgin thermoplastics vs. incinerated nano-enabled thermoplastic composites on two in vitro pulmonary models. Ultrafine particles released from thermally decomposed virgin polycarbonate or polyurethane, and their carbon nanotube (CNT)-enabled composites were collected and used for acute in vitro exposure to primary human small airway epithelial cell (pSAEC) and human bronchial epithelial cell (Beas-2B) models. Post-exposure, both cell lines were assessed for cytotoxicity, proliferative capacity, intracellular ROS generation, genotoxicity, and mitochondrial membrane potential. RESULTS: The treated Beas-2B cells demonstrated significant dose-dependent cellular responses, as well as parent matrix-dependent and CNT-dependent sensitivity. Cytotoxicity, enhancement in reactive oxygen species, and dissipation of ΔΨm caused by incinerated polycarbonate were significantly more potent than polyurethane analogues, and CNT filler enhanced the cellular responses compared to the incinerated parent particles. Such effects observed in Beas-2B were generally higher in magnitude compared to pSAEC at treatments examined, which was likely attributable to differences in respective lung cell types. CONCLUSIONS: Whilst the effect of the treatments on the distal respiratory airway epithelia remains limited in interpretation, the current in vitro respiratory bronchial epithelia model demonstrated profound sensitivity to the test particles at depositional doses relevant for occupational cohorts.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Incineración , Nanotubos de Carbono/química , Material Particulado/toxicidad , Plásticos/toxicidad , Bronquios , Línea Celular , Daño del ADN , Células Epiteliales , Estrés Oxidativo , Especies Reactivas de Oxígeno
12.
Biochim Biophys Acta Gen Subj ; 1864(11): 129683, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32679249

RESUMEN

BACKGROUND: Cardiac glycosides (CGs), such as digitoxin, are traditionally used for treatment of congestive heart failure; recently they also gained attention for their anticancer properties. Previous studies showed that digitoxin and a synthetic L-sugar monosaccharide analog treatment decreases cancer cell proliferation, increases apoptosis, and pro-adhesion abilities; however, no reports are available on their potential to alter lung cancer cell cytoskeleton structure and reduce migratory ability. Herein, we investigated the anticancer effects of digitoxin and its analog, digitoxigenin-α-L-rhamnoside (D6MA), to establish whether cytoskeleton reorganization and reduced motility are drug-induced cellular outcomes. METHODS: We treated non-small cell lung carcinoma cells (NSCLCs) with sub-therapeutic, therapeutic, and toxic concentrations of digitoxin and D6MA respectively, followed by both single point and real-time assays to evaluate changes in cellular gene and protein expression, adhesion, elasticity, and migration. RESULTS: Digitoxin and D6MA induced a decrease in matrix metalloproteinases expression via altered focal adhesion signaling and a suppression of the phosphoinositide 3-kinases / protein kinase B pathway which lead to enhanced adhesion, altered elasticity, and reduced motility of NSCLCs. Global gene expression analysis identified dose-dependent changes to nuclear factor kappa-light-chain-enhancer, epithelial tumor, and microtubule dynamics signaling. CONCLUSIONS: Our study demonstrates that digitoxin and D6MA can target antitumor signaling pathways to alter NSCLC cytoskeleton and migratory ability to thus potentially reduce their tumorigenicity. SIGNIFICANCE: Discovering signaling pathways that control cancer's cell phenotype and how such pathways are affected by CG treatment will potentially allow for active usage of synthetic CG analogs as therapeutic agents in advanced lung conditions.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Digitoxina/análogos & derivados , Digitoxina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/patología , Humanos , Neoplasias Pulmonares/patología
13.
Br J Cancer ; 123(8): 1289-1301, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32684624

RESUMEN

BACKGROUND: Calcium is an essential signal transduction element that has been associated with aggressive behaviours in several cancers. Cell motility is a prerequisite for metastasis, the major cause of lung cancer death, yet its association with calcium signalling and underlying regulatory axis remains an unexplored area. METHODS: Bioinformatics database analyses were employed to assess correlations between calcium influx channels and clinical outcomes in non-small cell lung cancer (NSCLC). Functional and regulatory roles of influx channels in cell migration and invasion were conducted and experimental lung metastasis was examined using in vivo live imaging. RESULTS: High expression of TRPM7 channel correlates well with the low survival rate of patients and high metastatic potential. Inhibition of TRPM7 suppresses cell motility in various NSCLC cell lines and patient-derived primary cells and attenuates experimental lung metastases. Mechanistically, TRPM7 acts upstream of O-GlcNAcylation, a post-translational modification and a crucial sensor for metabolic changes. We reveal for the first time that caveolin-1 and c-Myc are favourable molecular targets of TRPM7/O-GlcNAc that regulates NSCLC motility. O-GlcNAcylation of caveolin-1 and c-Myc promotes protein stability by interfering with their ubiquitination and proteasomal degradation. CONCLUSIONS: TRPM7/O-GlcNAc axis represents a potential novel target for lung cancer therapy that may overcome metastasis.


Asunto(s)
Acetilglucosamina/química , Carcinoma de Pulmón de Células no Pequeñas/patología , Caveolina 1/metabolismo , Neoplasias Pulmonares/patología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Canales Catiónicos TRPM/fisiología , Animales , Calcio/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Línea Celular Tumoral , Movimiento Celular , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Canales Catiónicos TRPM/antagonistas & inhibidores
14.
Cell Commun Signal ; 18(1): 78, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450888

RESUMEN

BACKGROUND: Oncogenesis rewires signaling networks to confer a fitness advantage to malignant cells. For instance, the B16F0 melanoma cell model creates a cytokine sink for Interleukin-12 (IL-12) to deprive neighboring cells of this important anti-tumor immune signal. While a cytokine sink provides an indirect fitness advantage, does IL-12 provide an intrinsic advantage to B16F0 cells? METHODS: Acute in vitro viability assays were used to compare the cytotoxic effect of imatinib on a melanoma cell line of spontaneous origin (B16F0) with a normal melanocyte cell line (Melan-A) in the presence of IL-12. The results were analyzed using a mathematical model coupled with a Markov Chain Monte Carlo approach to obtain a posterior distribution in the parameters that quantified the biological effect of imatinib and IL-12. Intracellular signaling responses to IL-12 were compared using flow cytometry in 2D6 cells, a cell model for canonical signaling, and B16F0 cells, where potential non-canonical signaling occurs. Bayes Factors were used to select among competing signaling mechanisms that were formulated as mathematical models. Analysis of single cell RNAseq data from human melanoma patients was used to explore generalizability. RESULTS: Functionally, IL-12 enhanced the survival of B16F0 cells but not normal Melan-A melanocytes that were challenged with a cytotoxic agent. Interestingly, the ratio of IL-12 receptor components (IL12RB2:IL12RB1) was increased in B16F0 cells. A similar pattern was observed in human melanoma. To identify a mechanism, we assayed the phosphorylation of proteins involved in canonical IL-12 signaling, STAT4, and cell survival, Akt. In contrast to T cells that exhibited a canonical response to IL-12 by phosphorylating STAT4, IL-12 stimulation of B16F0 cells predominantly phosphorylated Akt. Mechanistically, the differential response in B16F0 cells is explained by both ligand-dependent and ligand-independent aspects to initiate PI3K-AKT signaling upon IL12RB2 homodimerization. Namely, IL-12 promotes IL12RB2 homodimerization with low affinity and IL12RB2 overexpression promotes homodimerization via molecular crowding on the plasma membrane. CONCLUSIONS: The data suggest that B16F0 cells shifted the intracellular response to IL-12 from engaging immune surveillance to favoring cell survival. Identifying how signaling networks are rewired in model systems of spontaneous origin can inspire therapeutic strategies in humans. Interleukin-12 is a key cytokine that promotes anti-tumor immunity, as it is secreted by antigen presenting cells to activate Natural Killer cells and T cells present within the tumor microenvironment. Thinking of cancer as an evolutionary process implies that an immunosuppressive tumor microenvironment could arise during oncogenesis by interfering with endogenous anti-tumor immune signals, like IL-12. Previously, we found that B16F0 cells, a cell line derived from a spontaneous melanoma, interrupts this secreted heterocellular signal by sequestering IL-12, which provides an indirect fitness advantage. Normally, IL-12 signals via a receptor comprised of two components, IL12RB1 and IL12RB2, that are expressed in a 1:1 ratio and activates STAT4 as a downstream effector. Here, we report that B16F0 cells gain an intrinsic advantage by rewiring the canonical response to IL-12 to instead initiate PI3K-AKT signaling, which promotes cell survival. The data suggest a model where overexpressing one component of the IL-12 receptor, IL12RB2, enables melanoma cells to shift the functional response via both IL-12-mediated and molecular crowding-based IL12RB2 homodimerization. To explore the generalizability of these results, we also found that the expression of IL12RB2:IL12RB1 is similarly skewed in human melanoma based on transcriptional profiles of melanoma cells and tumor-infiltrating lymphocytes. Additional file 6: Video abstract. (MP4 600 kb).


Asunto(s)
Supervivencia Celular , Interleucina-12/metabolismo , Melanoma Experimental/inmunología , Receptores de Interleucina-12/metabolismo , Animales , Humanos , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas
15.
ACS Biomater Sci Eng ; 6(9): 5290-5304, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-33455278

RESUMEN

Certain nanosized particles like carbon nanotubes (CNTs) are known to induce pulmonary fibrosis, but the underlying mechanisms are unclear, and efforts to prevent this disease are lacking. Fibroblast-associated stem cells (FSCs) have been suggested as a critical driver of fibrosis induced by CNTs by serving as a renewable source of extracellular matrix-producing cells; however, a detailed understanding of this process remains obscure. Here, we demonstrated that single-walled CNTs induced FSC acquisition and fibrogenic responses in primary human lung fibroblasts. This was indicated by increased expression of stem cell markers (e.g., CD44 and ABCG2) and fibrogenic markers (e.g., collagen and α-SMA) in CNT-exposed cells. These cells also showed increased sphere formation, anoikis resistance, and aldehyde dehydrogenase (ALDH) activities, which are characteristics of stem cells. Mechanistic studies revealed sex-determining region Y-box 2 (SOX2), a self-renewal associated transcription factor, as a key driver of FSC acquisition and fibrogenesis. Upregulation and colocalization of SOX2 and COL1 were found in the fibrotic lung tissues of CNT-exposed mice via oropharyngeal aspiration after 56 days. The knockdown of SOX2 by gene silencing abrogated the fibrogenic and FSC-inducing effects of CNTs. Chromatin immunoprecipitation assays identified SOX2-binding sites on COL1A1 and COL1A2, indicating SOX2 as a transcription factor in collagen synthesis. SOX2 was also found to play a critical role in TGF-ß-induced fibrogenesis through its collagen- and FSC-inducing effects. Since many nanomaterials are known to induce TGF-ß, our findings that SOX2 regulate FSCs and fibrogenesis may have broad implications on the fibrogenic mechanisms and treatment strategies of various nanomaterial-induced fibrotic disorders.


Asunto(s)
Nanotubos de Carbono , Fibrosis Pulmonar , Animales , Fibroblastos , Pulmón , Ratones , Nanotubos de Carbono/efectos adversos , Fibrosis Pulmonar/inducido químicamente , Células Madre
16.
Mol Cell Biol ; 40(2)2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31658996

RESUMEN

Chemotherapy resistance and tumor relapse are the major contributors to low patient survival, and both have been largely attributed to cancer stem-like cells (CSCs) or tumor-initiating cells (TICs). Moreover, most conventional therapies are not effective against CSCs, which necessitates the discovery of CSC-specific biomarkers and drug targets. Here, we demonstrated that the embryonic transcription factor SOX9 is an important regulator of acquired chemoresistance in non-small-cell lung cancer (NSCLC). Our results show that SOX9 expression is elevated in NSCLC cells after treatment with the chemotherapeutic cisplatin and that overexpression of SOX9 correlates with worse overall survival in lung cancer patients. We further demonstrated that SOX9 knockdown increases cellular sensitivity to cisplatin, whereas its overexpression promotes drug resistance. Moreover, this transcription factor promotes the stem-like properties of NSCLC cells and increases their aldehyde dehydrogenase (ALDH) activity, which was identified to be the key mechanism of SOX9-induced chemoresistance. Finally, we showed that ALDH1A1 is a direct transcriptional target of SOX9, based on chromatin immunoprecipitation and luciferase reporter assays. Taken together, our novel findings on the role of the SOX9-ALDH axis support the use of this CSC regulator as a prognostic marker of cancer chemoresistance and as a potential drug target for CSC therapy.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/genética , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Retinal-Deshidrogenasa/genética , Factor de Transcripción SOX9/genética , Células A549 , Familia de Aldehído Deshidrogenasa 1/metabolismo , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Retinal-Deshidrogenasa/metabolismo , Factor de Transcripción SOX9/metabolismo , Regulación hacia Arriba/efectos de los fármacos
17.
Chem Res Toxicol ; 32(12): 2445-2458, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31698904

RESUMEN

Incorporation of engineered nanomaterials (ENMs) into nanocomposites using advanced manufacturing strategies is set to revolutionize diverse technologies. Of these, organomodified nanoclays (ONCs; i.e., smectite clays with different organic coatings) act as nanofillers in applications ranging from automotive to aerospace and biomedical systems. Recent toxicological evaluations increased awareness that exposure to ONC can occur along their entire life cycle, namely, during synthesis, handling, use, manipulation, and disposal. Compared to other ENMs, however, little information exists describing which physicochemical properties contribute to induced health risk. This study conducted high content screening on bronchial epithelial cell monolayers for coupled high-throughput in vitro assessment strategies aimed to evaluate acute toxicity of a library of ONCs (all of prevalent use) prior to and after simulated disposal by incineration. Coating-, incineration status-, and time-dependent effects were considered to determine changes in the pulmonary monolayer integrity, cell transepithelial resistance, apoptosis, and cell metabolism. Results showed that after exposure to each ONC at its half-maximal inhibitory concentration (IC50) there is a material-induced toxicity effect with pristine nanoclay, for instance, displaying acute loss of monolayer coverage, resistance, and metabolism, coupled with increased number of apoptotic cells. Conversely, the other three ONCs tested displayed little loss of monolayer integrity; however, they exhibited differential coating-dependent increased apoptosis and up to 40-45% initial reduction in cell metabolism. Moreover, incinerated byproducts of ONCs exhibited significant loss of monolayer coverage and integrity, increased necrosis, with little evidence of monolayer re-establishment. These findings indicate that characteristics of organic coating type largely determine the mechanism of cytotoxicity and the ability of the monolayer to recover. Use of high content screening coupled with traditional in vitro assays proves to serve as a rapid pulmonary toxicity assessment tool to help define prevention by targeted physicochemical material properties design strategies.


Asunto(s)
Bentonita/toxicidad , Bronquios/efectos de los fármacos , Arcilla/química , Células Epiteliales/efectos de los fármacos , Nanocompuestos/toxicidad , Apoptosis/efectos de los fármacos , Bronquios/citología , Adhesión Celular/efectos de los fármacos , Línea Celular , Humanos , Necrosis/inducido químicamente
18.
Int J Nanomedicine ; 14: 7583-7591, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31571865

RESUMEN

INTRODUCTION: The flexibility and tunability of metal organic frameworks (MOFs), crystalline porous materials composed of a network of metal ions coordinated by organic ligands, confer their variety of applications as drug delivery systems or as sensing and imaging agents. However, such properties also add to the difficulty in ensuring their safe implementation when interaction with biological systems is considered. METHODS: In the current study, we used real-time sensorial strategies and cellular-based approaches to allow for fast and effective screening of two MOFs of prevalent use, namely, MIL-160 representative of a hydrophilic and ZIF-8 representative of a hydrophobic framework. The two MOFs were synthesized "in house" and exposed to human bronchial epithelial (BEAS-2B) cells, a pertinent toxicological screening model. RESULTS: Analysis allowed evaluation and differentiation of particle-induced cellular effects as well identification of different degrees and routes of toxicity, all in a high-throughput manner. Our results show the importance of performing screening toxicity assessments before introducing MOFs to biomedical applications. DISCUSSION: Our proposed screening assays could be extended to a wider variety of cell lines to allow for identification of any deleterious effects of MOFs, with the range of toxic mechanisms to be differentiated based on cell viability, morphology and cell-substrate interactions, respectively. CONCLUSION: Our analysis highlights the importance of considering the physicochemical properties of MOFs when recommending a MOF-based therapeutic option or MOFs implementation in biomedical applications.


Asunto(s)
Células Epiteliales/patología , Pulmón/patología , Estructuras Metalorgánicas/toxicidad , Estructuras Metalorgánicas/uso terapéutico , Pruebas de Toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Estructuras Metalorgánicas/ultraestructura
19.
Chem Res Toxicol ; 32(12): 2382-2397, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31657553

RESUMEN

Iron oxide nanoparticles (IONP) have recently surged in production and use in a wide variety of biomedical and environmental applications. However, their potential long-term health effects, including carcinogenesis, are unknown. Limited research suggests IONP can induce genotoxicity and neoplastic transformation associated with particle dissolution and release of free iron ions. "Safe by design" strategies involve the modification of particle physicochemical properties to affect subsequent adverse outcomes, such as an amorphous silica coating to reduce IONP dissolution and direct interaction with cells. We hypothesized that long-term exposure to a specific IONP (nFe2O3) would induce neoplastic-like cell transformation, which could be prevented with an amorphous silica coating (SiO2-nFe2O3). To test this hypothesis, human bronchial epithelial cells (Beas-2B) were continuously exposed to a 0.6 µg/cm2 administered a dose of nFe2O3 (∼0.58 µg/cm2 delivered dose), SiO2-nFe2O3 (∼0.55 µg/cm2 delivered dose), or gas metal arc mild steel welding fumes (GMA-MS, ∼0.58 µg/cm2 delivered dose) for 6.5 months. GMA-MS are composed of roughly 80% iron/iron oxide and were recently classified as a total human carcinogen. Our results showed that low-dose/long-term in vitro exposure to nFe2O3 induced a time-dependent neoplastic-like cell transformation, as indicated by increased cell proliferation and attachment-independent colony formation, which closely matched that induced by GMA-MS. This transformation was associated with decreases in intracellular iron, minimal changes in reactive oxygen species (ROS) production, and the induction of double-stranded DNA damage. An amorphous silica-coated but otherwise identical particle (SiO2-nFe2O3) did not induce this neoplastic-like phenotype or changes in the parameters mentioned above. Overall, the presented data suggest the carcinogenic potential of long-term nFe2O3 exposure and the utility of an amorphous silica coating in a "safe by design" hazard reduction strategy, within the context of a physiologically relevant exposure scenario (low-dose/long-term), with model validation using GMA-MS.


Asunto(s)
Carcinógenos/toxicidad , Transformación Celular Neoplásica/efectos de los fármacos , Compuestos Férricos/toxicidad , Nanopartículas del Metal/toxicidad , Dióxido de Silicio/química , Carcinógenos/química , Proliferación Celular/efectos de los fármacos , ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Compuestos Férricos/química , Humanos , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno/metabolismo
20.
Environ Sci Nano ; 6(7): 2152-2170, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31372228

RESUMEN

Cancer stem cells (CSCs) are a key driver of tumor formation and metastasis, but how they are affected by nanomaterials is largely unknown. The present study investigated the effects of different carbon-based nanomaterials (CNMs) on neoplastic and CSC-like transformation of human small airway epithelial cells and determined the underlying mechanisms. Using a physiologically relevant exposure model (long-term/low-dose) with system validation using a human carcinogen, asbestos, we demonstrated that single-walled carbon nanotubes, multi-walled carbon nanotubes, ultrafine carbon black, and crocidolite asbestos induced particle-specific anchorage-independent colony formation, DNA-strand break, and p53 downregulation, indicating genotoxicity and carcinogenic potential of CNMs. The chronic CNM-exposed cells exhibited CSC-like properties as indicated by 3D spheroid formation, anoikis resistance, and CSC markers expression. Mechanistic studies revealed specific self-renewal and epithelial-mesenchymal transition (EMT)-related transcription factors that are involved in the cellular transformation process. Pathway analysis of gene signaling networks supports the role of SOX2 and SNAI1 signaling in CNM-mediated transformation. These findings support the potential carcinogenicity of high aspect ratio CNMs and identified molecular targets and signaling pathways that may contribute to the disease development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...