Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(18): 29452-29464, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710745

RESUMEN

In this work, we develop experimentally a Fabry-Perot fiber optic interferometer applied to the measurement of autocorrelation of complex dynamic pulses generated by a figure-eight fiber laser. The principle is based in the superposition of multiple pulses, which requires two partially reflecting flat surfaces in parallel, resulting in a simple and compact autocorrelator design. The autocorrelation trace obtained exhibits a typical double-scaled structure for noise-like pulses (NLPs), with an ultrashort coherence spur on the order of 100 fs riding upon a broad pedestal of 120 ps. Finally, we show experimentally that the developed Fabry-Perot device is able to measure accurately the autocorrelation of NLPs, as confirmed by comparing the measurement with that of a conventional autocorrelator scheme based on a Michelson interferometer, with the additional advantages of a more compact setup and a much easier alignment procedure compared to the latter.

2.
Opt Quantum Electron ; 53(5): 237, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907348

RESUMEN

An experimental study of the interaction between a Mylar® polymer film and a multimode fiber-optic is presented for the simultaneous fiber-optic detection of low-pressure and liquid levels. The junction between the polymer and optical fiber produces an interference spectrum with maximal visibility and free spectral range around 9 dB and 31 nm, respectively. Water pressure, which is controlled by the liquid level, stresses the polymer. As a result, the spectrum wavelength shifts to the blue region, achieving high sensitivities around 2.49 nm/kPa and 24.5 nm/m. The polymeric membrane was analyzed using a finite element model; according to the results, the polymer shows linear stress response. Furthermore, the membrane material is operated below the yielding point. Moreover, the finite analysis provides information about the stress effect over the thickness and the birefringence changes. This sensor exhibits a quadratic polynomial fitting with an adjusted R-squared of 0.9539. The proposed sensing setup offers a cost-effective alternative for liquid level and low-pressure detection.

3.
Opt Lett ; 44(16): 4024-4027, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31415537

RESUMEN

We propose the implementation of fiber Bragg gratings in tapered few-mode and multimode fibers to accomplish single-mode operation by reducing the core diameter, while preserving the core-cladding structure. The gratings present a single reflection band, and the device shows low insertion losses after the taper fabrication and the fiber Bragg gratings inscription. The excitation of high-order odd modes in the core of the fiber has been identified as the main loss mechanism; it can be prevented by means of symmetric illumination of the fibers. We also demonstrate the excitation of high-order cladding modes (cladding-air modes) along the taper transitions; these modes can be removed without a significant increment of the insertion loss.

4.
Opt Express ; 24(13): 13778-87, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27410541

RESUMEN

In this work, we study a 215-m-long figure-of-eight fiber laser including a double-clad erbium-ytterbium fiber and a nonlinear optical loop mirror based on nonlinear polarization evolution. For proper adjustments, self-starting passive mode-locking is obtained. Measurements show that the mode-locked pulses actually are noise-like pulses, by analyzing the autocorrelation, scope traces and the very broad and flat spectrum extending over a record bandwidth of more than 200 nm, beyond the 1750 nm upper wavelength limit of the optical spectrum analyzer. Noise-like pulsing was observed for moderate and high pump power preserving the same behavior, reaching pulse energies as high as 300 nJ, with pulse durations of a few tens of ns and a coherence length in the order of 1 ps. Stable fundamental mode locking as well as harmonic mode locking up to the 6th order were observed. The bandwidth was further extended to more than 450 nm when a 100-m piece of highly nonlinear fiber was inserted at the laser output. The enhanced performances obtained compared to other similar schemes could be related to the absence of a polarizer in the present setup, so that the state of polarization along the cavity is no longer restricted.

5.
Opt Express ; 13(26): 10760-7, 2005 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-19503293

RESUMEN

We examine the transmission characteristics of a NOLM device using a symmetrical coupler, highly twisted fiber, and a quarter-wave (QW) retarder plate introducing a polarization asymmetry in the loop. We demonstrate high dynamic range with controllable transmissivity, and good stability over long times. We experimentally study the transmission behavior for different input polarization states and distinguish between different polarization components of the output beam. Experiments are in good agreement with our theoretical approach previously published. Appropriate choice of the input and output polarizations allows a very high dynamic range. The adjustment of the QW retarder and input polarization enables tuning the critical power over a wide range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...