Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361864

RESUMEN

Parkinson disease (PD) is a common neurodegenerative condition affecting people predominantly at old age that is characterized by a progressive loss of midbrain dopaminergic neurons and by the accumulation of α-synuclein-containing intraneuronal inclusions known as Lewy bodies. Defects in cellular degradation processes such as the autophagy-lysosomal pathway are suspected to be involved in PD progression. The mammalian Lysosomal-associated membrane proteins LAMP1 and LAMP2 are transmembrane glycoproteins localized in lysosomes and late endosomes that are involved in autophagosome/lysosome maturation and function. Here, we show that the lack of Drosophila Lamp1, the homolog of LAMP1 and LAMP2, severely increased fly susceptibility to paraquat, a pro-oxidant compound known as a potential PD inducer in humans. Moreover, the loss of Lamp1 also exacerbated the progressive locomotor defects induced by the expression of PD-associated mutant α-synuclein A30P (α-synA30P) in dopaminergic neurons. Remarkably, the ubiquitous re-expression of Lamp1 in a mutant context fully suppressed all these defects and conferred significant resistance towards both PD factors above that of wild-type flies. Immunostaining analysis showed that the brain levels of α-synA30P were unexpectedly decreased in young adult Lamp1-deficient flies expressing this protein in comparison to non-mutant controls. This suggests that Lamp1 could neutralize α-synuclein toxicity by promoting the formation of non-pathogenic aggregates in neurons. Overall, our findings reveal a novel role for Drosophila Lamp1 in protecting against oxidative stress and α-synuclein neurotoxicity in PD models, thus furthering our understanding of the function of its mammalian homologs.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Humanos , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Drosophila/genética , Drosophila/metabolismo , Neuronas Dopaminérgicas/metabolismo , Estrés Oxidativo/genética , Mamíferos/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo
2.
BMC Biol ; 20(1): 198, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071487

RESUMEN

BACKGROUND: Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS: We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS: These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Cuerpos Pedunculados , Receptores Citoplasmáticos y Nucleares , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/farmacología , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo
3.
Front Cell Dev Biol ; 10: 874362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982851

RESUMEN

Cell segregation mechanisms play essential roles during the development of the central nervous system (CNS) to support its organization into distinct compartments. The Slit protein is a secreted signal, classically considered a paracrine repellent for axonal growth through Robo receptors. However, its function in the compartmentalization of CNS is less explored. In this work, we show that Slit and Robo3 are expressed in the same neuronal population of the Drosophila optic lobe, where they are required for the correct compartmentalization of optic lobe neuropils by the action of an autocrine/paracrine mechanism. We characterize the endocytic route followed by the Slit/Robo3 complex and detected genetic interactions with genes involved in endocytosis and actin dynamics. Thus, we report that the Slit-Robo3 pathway regulates the morphogenesis of the optic lobe through an atypical autocrine/paracrine mechanism in addition to its role in axon guidance, and in association with proteins of the endocytic pathway and small GTPases.

4.
Cells ; 11(9)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563850

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease characterized by motor symptoms and dopaminergic cell loss. A pre-symptomatic phase characterized by non-motor symptoms precedes the onset of motor alterations. Two recent PET studies in human carriers of mutations associated with familial PD demonstrate an early serotonergic commitment-alteration in SERT binding-before any dopaminergic or motor dysfunction, that is, at putative PD pre-symptomatic stages. These findings support the hypothesis that early alterations in the serotonergic system could contribute to the progression of PD, an idea difficult to be tested in humans. Here, we study some components of the serotonergic system during the pre-symptomatic phase in a well-characterized Drosophila PD model, Pink1B9 mutant flies. We detected lower brain serotonin content in Pink1B9 flies, accompanied by reduced activity of SERT before the onset of motor dysfunctions. We also explored the consequences of a brief early manipulation of the serotonergic system in the development of motor symptoms later in aged animals. Feeding young Pink1B9 flies with fluoxetine, a SERT blocker, prevents the loss of dopaminergic neurons and ameliorates motor impairment observed in aged mutant flies. Surprisingly, the same pharmacological manipulation in young control flies results in aged animals exhibiting a PD-like phenotype. Our findings support that an early dysfunction in the serotonergic system precedes and contributes to the onset of the Parkinsonian phenotype in Drosophila.


Asunto(s)
Proteínas de Drosophila , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Enfermedad de Parkinson/genética , Fenotipo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...