Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
ESC Heart Fail ; 8(3): 1806-1818, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33768692

RESUMEN

AIMS: Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). METHODS AND RESULTS: Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca2+ reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+ ] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca2+ release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+ ] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+ -wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. CONCLUSIONS: In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity.


Asunto(s)
Insuficiencia Cardíaca , Animales , Ecocardiografía , Miocitos Cardíacos , Ratas , Retículo Sarcoplasmático , Volumen Sistólico
2.
ESC Heart Fail ; 8(1): 139-150, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33350094

RESUMEN

AIMS: Heart failure with preserved ejection fraction (HFpEF) is associated with reduced exercise capacity elicited by skeletal muscle (SM) alterations. Up to now, no clear medical treatment advice for HFpEF is available. Identification of the ideal animal model mimicking the human condition is a critical step in developing and testing treatment strategies. Several HFpEF animals have been described, but the most suitable in terms of comparability with SM alterations in HFpEF patients is unclear. The aim of the present study was to investigate molecular changes in SM of three different animal models and to compare them with alterations of muscle biopsies obtained from human HFpEF patients. METHODS AND RESULTS: Skeletal muscle tissue was obtained from HFpEF and control patients and from three different animal models including the respective controls-ZSF1 rat, Dahl salt-sensitive rat, and transverse aortic constriction surgery/deoxycorticosterone mouse. The development of HFpEF was verified by echocardiography. Protein expression and enzyme activity of selected markers were assessed in SM tissue homogenates. Protein expression between SM tissue obtained from HFpEF patients and the ZSF1 rats revealed similarities for protein markers involved in muscle atrophy (MuRF1 expression, protein ubiquitinylation, and LC3) and mitochondrial metabolism (succinate dehydrogenase and malate dehydrogenase activity, porin expression). The other two animal models exhibited far less similarities to the human samples. CONCLUSIONS: None of the three tested animal models mimics the condition in HFpEF patients completely, but among the animal models tested, the ZSF1 rat (ZSF1-lean vs. ZSF1-obese) shows the highest overlap to the human condition. Therefore, when studying therapeutic interventions to treat HFpEF and especially alterations in the SM, we suggest that the ZSF1 rat is a suitable model.


Asunto(s)
Insuficiencia Cardíaca , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Músculo Esquelético , Ratas , Ratas Endogámicas Dahl , Volumen Sistólico
3.
Front Cardiovasc Med ; 7: 626699, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33644125

RESUMEN

There is an incomplete understanding of the underlying pathophysiology in hypertensive emergencies, where severely elevated blood pressure causes acute end-organ injuries, as opposed to the long-term manifestations of chronic hypertension. Furthermore, current biomarkers are unable to detect early end-organ injuries like hypertensive encephalopathy and renal thrombotic microangiopathy. We hypothesized that circulating microRNAs (c-miRs) could identify acute and chronic complications of severe hypertension, and that combinations of c-miRs could elucidate important pathways involved. We studied the diagnostic accuracy of 145 c-miRs in Dahl salt-sensitive rats fed either a low-salt (N = 20: 0.3% NaCl) or a high-salt (N = 60: 8% NaCl) diet. Subclinical hypertensive encephalopathy and thrombotic microangiopathy were diagnosed by histopathology. In addition, heart failure with preserved ejection fraction was evaluated with echocardiography and N-terminal pro-brain natriuretic peptide; and endothelial dysfunction was studied using acetylcholine-induced aorta ring relaxation. Systolic blood pressure increased severely in animals on a high-salt diet (high-salt 205 ± 20 mm Hg vs. low-salt 152 ± 18 mm Hg, p < 0.001). Partial least squares discriminant analysis revealed 68 c-miRs discriminating between animals with and without hypertensive emergency complications. Twenty-nine c-miRs were strongly associated with hypertensive encephalopathy, 24 c-miRs with thrombotic microangiopathy, 30 c-miRs with heart failure with preserved ejection fraction, and 28 c-miRs with endothelial dysfunction. Hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction were associated with deviations in many of the same c-miRs, whereas endothelial dysfunction was associated with a different set of c-miRs. Several of these c-miRs demonstrated fair to good diagnostic accuracy for a composite outcome of hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction in receiver-operating-curve analyses (area-under-curve 0.75-0.88). Target prediction revealed an enrichment of genes related to several pathways relevant for cardiovascular disease (e.g., mucin type O-glycan biosynthesis, MAPK, Wnt, Hippo, and TGF-beta signaling). C-miRs could potentially serve as biomarkers of severe hypertensive end-organ injuries and elucidate important pathways involved.

4.
J Mol Cell Cardiol ; 131: 53-65, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31005484

RESUMEN

AIMS: Atrial contractile dysfunction is associated with increased mortality in heart failure (HF). We have shown previously that a metabolic syndrome-based model of HFpEF and a model of hypertensive heart disease (HHD) have impaired left atrial (LA) function in vivo (rat). In this study we postulate, that left atrial cardiomyocyte (CM) and cardiac fibroblast (CF) paracrine interaction related to the inositol 1,4,5-trisphosphate signalling cascade is pivotal for the manifestation of atrial mechanical dysfunction in HF and that quantitative atrial remodeling is highly disease-dependent. METHODS AND RESULTS: Differential remodeling was observed in HHD and HFpEF as indicated by an increase of atrial size in vivo (HFpEF), unchanged fibrosis (HHD and HFpEF) and a decrease of CM size (HHD). Baseline contractile performance of rat CM in vitro was enhanced in HFpEF. Upon treatment with conditioned medium from their respective stretched CF (CM-SF), CM (at 21 weeks) of WT showed increased Ca2+ transient (CaT) amplitudes related to the paracrine activity of the inotrope endothelin (ET-1) and inositol 1,4,5-trisphosphate induced Ca2+ release. Concentration of ET-1 was increased in CM-SF and atrial tissue from WT as compared to HHD and HFpEF. In HHD, CM-SF had no relevant effect on CaT kinetics. However, in HFpEF, CM-SF increased diastolic Ca2+ and slowed Ca2+ removal, potentially contributing to an in-vivo decompensation. During disease progression (i.e. at 27 weeks), HFpEF displayed dysfunctional excitation-contraction-coupling (ECC) due to lower sarcoplasmic-reticulum Ca2+ content unrelated to CF-CM interaction or ET-1, but associated with enhanced nuclear [Ca2+]. In human patients, tissue ET-1 was not related to the presence of arterial hypertension or obesity. CONCLUSIONS: Atrial remodeling is a complex entity that is highly disease and stage dependent. The activity of fibrosis related to paracrine interaction (e.g. ET-1) might contribute to in vitro and in vivo atrial dysfunction. However, during later stages of disease, ECC is impaired unrelated to CF.


Asunto(s)
Fibroblastos/citología , Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Hipertensión/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Fibrilación Atrial/metabolismo , Remodelación Atrial/fisiología , Comunicación Celular/fisiología , Ecocardiografía , Atrios Cardíacos/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratas
5.
Sci Rep ; 8(1): 17772, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538258

RESUMEN

Given the association between high aerobic capacity and the prevention of metabolic diseases, elucidating the mechanisms by which high aerobic capacity regulates whole-body metabolic homeostasis is a major research challenge. Oxidative post-translational modifications (Ox-PTMs) of proteins can regulate cellular homeostasis in skeletal and cardiac muscles, but the relationship between Ox-PTMs and intrinsic components of oxidative energy metabolism is still unclear. Here, we evaluated the Ox-PTM profile in cardiac and skeletal muscles of rats bred for low (LCR) and high (HCR) intrinsic aerobic capacity. Redox proteomics screening revealed different cysteine (Cys) Ox-PTM profile between HCR and LCR rats. HCR showed a higher number of oxidized Cys residues in skeletal muscle compared to LCR, while the opposite was observed in the heart. Most proteins with differentially oxidized Cys residues in the skeletal muscle are important regulators of oxidative metabolism. The most oxidized protein in the skeletal muscle of HCR rats was malate dehydrogenase (MDH1). HCR showed higher MDH1 activity compared to LCR in skeletal, but not cardiac muscle. These novel findings indicate a clear association between Cys Ox-PTMs and aerobic capacity, leading to novel insights into the role of Ox-PTMs as an essential signal to maintain metabolic homeostasis.


Asunto(s)
Cisteína/metabolismo , Metabolismo Energético/fisiología , Estrés Oxidativo/fisiología , Animales , Respiración de la Célula , Tolerancia al Ejercicio/fisiología , Malato Deshidrogenasa/metabolismo , Masculino , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Oxidación-Reducción , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Ratas , Carrera/fisiología
6.
Int J Cardiol ; 273: 147-154, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30193792

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction, but the molecular mechanisms still remain unclear. Whether exercise training (ET) along with which optimal modality can improve endothelial function is controversial. The present study used a hypertensive, diabetic-driven HFpEF animal model (ZSF1 rats) to determine whether different training modalities (moderate-continuous (MCT) and high-intensity interval training (HIIT)) could reverse endothelial dysfunction and to understand the underlying molecular mechanisms. METHODS AND RESULTS: The development of HFpEF in ZSF1 obese animals was confirmed by echocardiography and hemodynamic measurements. Thereafter, animals were randomized into following groups: 1) sedentary, 2) 8 weeks of MCT, 3) 8 weeks of HIIT. ZSF1 lean animals served as control. In vitro measurement of endothelial function in aortic rings revealed significantly impaired endothelial-dependent and -independent vasodilation in HFpEF, which was reversed by MCT and HIIT. At the molecular level, the development of endothelial dysfunction was associated with a reduced expression / activation of endothelial nitric oxide synthase (eNOS), an increase in NADPH and activation of c-Jun N-terminal protein kinase (JNK), a reduced collagen I/III ratio and a reduced lining of the vessel wall by endothelial cells. ET primarily decreased NADPH oxidase expression, and JNK activation, elevated collagen I/III ratio while further improving aortic endothelial cell coverage. CONCLUSIONS: The present study provides evidence that endothelial dysfunction occurs in experimental HFpEF and that ET, independent of the studied training modality, reverses endothelial dysfunction and specific molecular alterations. ET may therefore provide an important therapeutic intervention for HFpEF patients.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Endotelio Vascular/fisiología , Insuficiencia Cardíaca/fisiopatología , Entrenamiento de Intervalos de Alta Intensidad/métodos , Hipertensión/fisiopatología , Condicionamiento Físico Animal/métodos , Animales , Diabetes Mellitus Experimental/diagnóstico por imagen , Diabetes Mellitus Experimental/terapia , Endotelio Vascular/diagnóstico por imagen , Endotelio Vascular/efectos de los fármacos , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/terapia , Hipertensión/diagnóstico por imagen , Hipertensión/terapia , Masculino , Obesidad/diagnóstico por imagen , Obesidad/fisiopatología , Obesidad/terapia , Condicionamiento Físico Animal/fisiología , Ratas , Volumen Sistólico/fisiología , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
7.
J Card Fail ; 24(9): 603-613, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30195827

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is underpinned by detrimental skeletal muscle alterations that contribute to disease severity, yet underlying mechanisms and therapeutic treatments remain poorly established. This study used a nonhuman animal model of HFpEF to better understand whether skeletal muscle abnormalities were (1) fiber-type specific and (2) reversible by various exercise training regimes. METHODS AND RESULTS: Lean control rats were compared with obese ZSF1 rats at 20 weeks and then 8 weeks after sedentary, high-intensity interval training, or moderate continuous treadmill exercise. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were assessed for fiber size, capillarity, glycolytic metabolism, autophagy, and contractile function. HFpEF reduced fiber size and capillarity by 20%-50% (P < .05) in both soleus and EDL, but these effects were not reversed by endurance training. In contrast, both endurance training regimes in HFpEF attenuated the elevated lactate dehydrogenase activity observed in the soleus. Autophagy was down-regulated in EDL and up-regulated in soleus (P < .05), with no influence of endurance training. HFpEF impaired contractile forces of both muscles by ∼20% (P < .05), and these were not reversed by training. CONCLUSIONS: Obesity-related HFpEF was associated with detrimental structural, cellular, and functional alterations to both slow-oxidative and fast-glycolytic skeletal muscles that could not be reversed by endurance training.


Asunto(s)
Insuficiencia Cardíaca/rehabilitación , Contracción Muscular/fisiología , Músculo Esquelético/patología , Estrés Oxidativo , Condicionamiento Físico Animal/métodos , Volumen Sistólico/fisiología , Animales , Autofagia , Modelos Animales de Enfermedad , Terapia por Ejercicio , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/fisiopatología , Hidroliasas/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Ratas , Ratas Zucker
8.
Int J Cardiol ; 272: 194-201, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30173922

RESUMEN

BACKGROUND: Disruption of endoplasmic reticulum (ER) homeostasis is a common feature of cardiac diseases. However, the signaling events involved in ER stress-induced cardiac dysfunction are still elusive. Here, we uncovered a mechanism by which disruption of ER homeostasis impairs cardiac contractility. METHODS/RESULTS: We found that ER stress is associated with activation of JNK and upregulation of BNIP3 in a post-myocardial infarction (MI) model of cardiac dysfunction. Of interest, 4-week treatment of MI rats with the chemical ER chaperone 4-phenylbutyrate (4PBA) prevented both activation of JNK and upregulation of BNIP3, and improved cardiac contractility. We showed that disruption of ER homeostasis by treating adult rat cardiomyocytes in culture with tunicamycin leads to contractile dysfunction through JNK signaling pathway. Upon ER stress JNK upregulates BNIP3 in a FOXO3a-dependent manner. Further supporting a BNIP3 mechanism for ER stress-induced deterioration of cardiac function, siRNA-mediated BNIP3 knockdown mitigated ER stress-induced cardiomyocyte dysfunction by reestablishing sarcoplasmic reticulum Ca2+ content. CONCLUSIONS: Collectively, our data identify JNK-dependent upregulation of BNIP3 as a critical process involved in ER stress-induced cardiomyocyte contractile dysfunction and highlight 4PBA as a potential intervention to counteract ER stress-mediated BNIP3 upregulation in failing hearts.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de la Membrana/biosíntesis , Proteínas Mitocondriales/biosíntesis , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Regulación hacia Arriba/fisiología , Animales , Células Cultivadas , Ratas
9.
Front Physiol ; 9: 206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593565

RESUMEN

Aims: Increasing age is the most important risk factor for atrial fibrillation (AF). Very high doses of exercise training might increase AF risk, while moderate levels seem to be protective. This study aimed to examine the effects of age on vulnerability to AF and whether long-term aerobic interval training (AIT) could modify these effects. Methods: Nine months old, male Sprague-Dawley rats were randomized to AIT for 16 weeks (old-ex) or to a sedentary control group (old-sed), and compared to young sedentary males (young-sed). After the intervention, animals underwent echocardiography, testing of exercise capacity (VO2max), and electrophysiology with AF induction before ex vivo electrophysiology. Fibrosis quantification, immunohistochemistry and western blotting of atrial tissue were performed. Results: Sustained AF was induced in vivo in 4 of 11 old-sed animals, but none of the old-ex or young-sed rats (p = 0.006). VO2max was lower in old-sed, while old-ex had comparable results to young-sed. Fibrosis was increased in old-sed (p = 0.006), with similar results in old-ex. There was a significantly slower atrial conduction in old-sed (p = 0.038), with an increase in old-ex (p = 0.027). Action potential duration was unaltered in old-sed, but prolonged in old-ex (p = 0.036). There were no differences in amount of atrial connexin 43 between groups, but a lateralization in atrial cardiomyocytes of old-sed, with similar findings in old-ex. Conclusion: AF vulnerability was higher in old-sed animals, associated with increased atrial fibrosis, lateralization of connexin-43, and reduced atrial conduction velocity. AIT reduced the age-associated susceptibility to AF, possibly through increased conduction velocity and prolongation of action potentials.

10.
J Am Heart Assoc ; 6(10)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066440

RESUMEN

BACKGROUND: Respiratory muscle weakness contributes to exercise intolerance in patients with heart failure with a preserved ejection fraction (HFpEF)-a condition characterized by multiple comorbidities with few proven treatments. We aimed, therefore, to provide novel insight into the underlying diaphragmatic alterations that occur in HFpEF by using an obese cardiometabolic rat model and further assessed whether exercise training performed only after the development of overt HFpEF could reverse impairments. METHODS AND RESULTS: Obese ZSF1 rats (n=12) were compared with their lean controls (n=8) at 20 weeks, with 3 additional groups of obese ZSF1 rats compared at 28 weeks following 8 weeks of either sedentary behavior (n=13), high-intensity interval training (n=11), or moderate-continuous training (n=11). Obese rats developed an obvious HFpEF phenotype at 20 and 28 weeks. In the diaphragm at 20 weeks, HFpEF induced a shift towards an oxidative phenotype and a fiber hypertrophy paralleled by a lower protein expression in MuRF1 and MuRF2, yet mitochondrial and contractile functional impairments were observed. At 28 weeks, neither the exercise training regimen of high-intensity interval training or moderate-continuous training reversed any of the diaphragm alterations induced by HFpEF. CONCLUSIONS: This study, using a well-characterized rat model of HFpEF underpinned by multiple comorbidities and exercise intolerance (ie, one that closely resembles the patient phenotype), provides evidence that diaphragm alterations and dysfunction induced in overt HFpEF are not reversed following 8 weeks of aerobic exercise training. As such, whether alternative therapeutic interventions are required to treat respiratory muscle weakness in HFpEF warrants further investigation.


Asunto(s)
Diafragma/fisiopatología , Tolerancia al Ejercicio , Insuficiencia Cardíaca/terapia , Entrenamiento de Intervalos de Alta Intensidad , Debilidad Muscular , Obesidad/terapia , Volumen Sistólico , Función Ventricular Izquierda , Animales , Diafragma/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/fisiopatología , Oxidación-Reducción , Fenotipo , Ratas Zucker , Factores de Tiempo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
Circ Heart Fail ; 9(9)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27609832

RESUMEN

BACKGROUND: A greater understanding of the different underlying mechanisms between patients with heart failure with reduced (HFrEF) and with preserved (HFpEF) ejection fraction is urgently needed to better direct future treatment. However, although skeletal muscle impairments, potentially mediated by inflammatory cytokines, are common in both HFrEF and HFpEF, the underlying cellular and molecular alterations that exist between groups are yet to be systematically evaluated. The present study, therefore, used established animal models to compare whether alterations in skeletal muscle (limb and respiratory) were different between HFrEF and HFpEF, while further characterizing inflammatory cytokines. METHODS AND RESULTS: Rats were assigned to (1) HFrEF (ligation of the left coronary artery; n=8); (2) HFpEF (high-salt diet; n=10); (3) control (con: no intervention; n=7). Heart failure was confirmed by echocardiography and invasive measures. Soleus tissue in HFrEF, but not in HFpEF, showed a significant increase in markers of (1) muscle atrophy (ie, MuRF1, calpain, and ubiquitin proteasome); (2) oxidative stress (ie, higher nicotinamide adenine dinucleotide phosphate oxidase but lower antioxidative enzyme activities); (3) mitochondrial impairments (ie, a lower succinate dehydrogenase/lactate dehydrogenase ratio and peroxisome proliferator-activated receptor-γ coactivator-1α expression). The diaphragm remained largely unaffected between groups. Plasma concentrations of circulating cytokines were significantly increased in HFrEF for tumor necrosis factor-α, whereas interleukin-1ß and interleukin-12 were higher in HFpEF. CONCLUSIONS: Our findings suggest, for the first time, that skeletal muscle alterations are exacerbated in HFrEF compared with HFpEF, which predominantly reside in limb, rather than in respiratory, muscle. This disparity may be mediated, in part, by the different circulating inflammatory cytokines that were elevated between HFpEF and HFrEF.


Asunto(s)
Citocinas/sangre , Insuficiencia Cardíaca/sangre , Mediadores de Inflamación/sangre , Músculo Esquelético/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Animales , Diafragma/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Interleucina-12/sangre , Interleucina-1beta/sangre , Mitocondrias Musculares/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Atrofia Muscular/sangre , Atrofia Muscular/patología , Estrés Oxidativo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Regulación hacia Arriba
12.
J Cell Mol Med ; 20(11): 2208-2212, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27305869

RESUMEN

Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease.


Asunto(s)
Estrés del Retículo Endoplásmico , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Miocardio/patología , Condicionamiento Físico Animal , Proteínas/metabolismo , Animales , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/fisiopatología , Pruebas de Función Cardíaca , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Pliegue de Proteína , Ratas Wistar
13.
J Appl Physiol (1985) ; 119(6): 745-52, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26229002

RESUMEN

Heart failure patients with preserved left ventricular ejection fraction (HFpEF) have endothelial dysfunction, but the underlying molecular mechanisms remain unknown. In addition, whether exercise training improves endothelial function in HFpEF is still controversial. The present study therefore aimed to determine the functional and molecular alterations in the endothelium associated with HFpEF, while further assessing the effects of high-intensity interval training (HIT). Female Dahl salt-sensitive rats were randomized for 28 wk into the following groups: 1) control: fed 0.3% NaCl; 2) HFpEF: fed 8% NaCl; and 3) HFpEF + HIT: animals fed 8% NaCl and HIT treadmill exercise. Echocardiography and invasive hemodynamic measurements were used to assess diastolic dysfunction. Endothelial function of the aorta was measured in vitro. Expression of endothelial nitric oxide synthase (eNOS), nicotinamide adenine dinucleotide phosphate-oxidase [NAD(P)H oxidase], and advanced glycation end product (AGE)-modified proteins were quantified by Western blot, and zymography quantified matrix metalloproteinase (MMP) activity. In this model of HFpEF, endothelium-dependent and -independent vasodilation was impaired. However, this was prevented by HIT. In HFpEF protein expression of eNOS was reduced by 47%, but MMP-2 and MMP-9 activity was elevated by 186 and 68%. The expression of AGE-modified proteins was increased by 106%. All of these changes were prevented by HIT. Endothelial function was impaired in this model of HFpEF, which was associated with reduced expression of eNOS, increased MMP activity, and increased AGE-modified proteins. HIT was able to attenuate both these functional and molecular alterations. These findings therefore suggest HFpEF induces endothelial dysfunction, but this is reversible by HIT.


Asunto(s)
Endotelio/fisiopatología , Tolerancia al Ejercicio/fisiología , Insuficiencia Cardíaca/fisiopatología , Condicionamiento Físico Animal/fisiología , Cloruro de Sodio/metabolismo , Enfermedades Vasculares/fisiopatología , Animales , Endotelio/metabolismo , Prueba de Esfuerzo/métodos , Femenino , Insuficiencia Cardíaca/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas , Ratas Endogámicas Dahl , Enfermedades Vasculares/metabolismo , Vasodilatación/fisiología
14.
Basic Res Cardiol ; 110(4): 44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26112154

RESUMEN

Diabetes mellitus (DM) increases the risk of heart failure after myocardial infarction (MI), and aggravates ventricular arrhythmias in heart failure patients. Although exercise training improves cardiac function in heart failure, it is still unclear how it benefits the diabetic heart after MI. To study the effects of aerobic interval training on cardiac function, susceptibility to inducible ventricular arrhythmias and cardiomyocyte calcium handling in DM mice after MI (DM-MI). Male type 2 DM mice (C57BLKS/J Lepr (db) /Lepr (db) ) underwent MI or sham surgery. One group of DM-MI mice was submitted to aerobic interval training running sessions during 6 weeks. Cardiac function and structure were assessed by echocardiography and magnetic resonance imaging, respectively. Ventricular arrhythmias were induced by high-frequency cardiac pacing in vivo. Protein expression was measured by Western blot. DM-MI mice displayed increased susceptibility for inducible ventricular arrhythmias and impaired diastolic function when compared to wild type-MI, which was associated with disruption of cardiomyocyte calcium handling and increased calcium leak from the sarcoplasmic reticulum. High-intensity exercise recovered cardiomyocyte function in vitro, reduced sarcoplasmic reticulum diastolic calcium leak and significantly reduced the incidence of inducible ventricular arrhythmias in vivo in DM-MI mice. Exercise training also normalized the expression profile of key proteins involved in cardiomyocyte calcium handling, suggesting a potential molecular mechanism for the benefits of exercise in DM-MI mice. High-intensity aerobic exercise training recovers cardiomyocyte function and reduces inducible ventricular arrhythmias in infarcted diabetic mice.


Asunto(s)
Arritmias Cardíacas/prevención & control , Diabetes Mellitus Tipo 2/complicaciones , Infarto del Miocardio/complicaciones , Condicionamiento Físico Animal , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Función Ventricular Izquierda
15.
Eur J Heart Fail ; 17(3): 263-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25655080

RESUMEN

AIMS: Peripheral muscle dysfunction is a key mechanism contributing to exercise intolerance (i.e. breathlessness and fatigue) in heart failure patients with preserved ejection fraction (HFpEF); however, the underlying molecular and cellular mechanisms remain unknown. We therefore used an animal model to elucidate potential molecular, mitochondrial, histological, and functional alterations induced by HFpEF in the diaphragm and soleus, while also determining the possible benefits associated with exercise training. METHODS AND RESULTS: Female Dahl salt-sensitive rats were fed a low (CON; n = 10) or high salt (HFpEF; n = 11) diet of 0.3% or 8% NaCl, respectively, or a high salt diet in combination with treadmill exercise training (n = 11). Compared with low-salt rats, high-salt rats developed (P < 0.05) HFpEF. Compared with CON, the diaphragm of HFpEF rats demonstrated (P < 0.05): a fibre type shift from fast-to-slow twitch; fibre atrophy; a decreased pro-oxidative but increased anti-oxidant capacity; reduced proteasome activation; impaired in situ mitochondrial respiration; and in vitro muscle weakness and increased fatigability. The soleus also demonstrated numerous alterations (P < 0.05), including fibre atrophy, decreased anti-oxidant capacity, reduced mitochondrial density, and increased fatigability. Exercise training, however, prevented mitochondrial and functional impairments in both the diaphragm and soleus (P < 0.05). CONCLUSION: Our findings are the first to demonstrate that HFpEF induces significant molecular, mitochondrial, histological, and functional alterations in the diaphragm and soleus, which were attenuated by exercise training. These data therefore reveal novel mechanisms and potential therapeutic treatments of exercise intolerance in HFpEF.


Asunto(s)
Diafragma/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/fisiopatología , Volumen Sistólico/fisiología , Animales , Catalasa/metabolismo , Diafragma/metabolismo , Tolerancia al Ejercicio/fisiología , Femenino , Insuficiencia Cardíaca/metabolismo , Modelos Animales , Músculo Esquelético/metabolismo , Cadenas Ligeras de Miosina/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Endogámicas Dahl , Superóxido Dismutasa/metabolismo , Troponina C/metabolismo
16.
PLoS One ; 8(10): e76568, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146891

RESUMEN

BACKGROUND: Although high aerobic capacity is associated with effective cardiac function, the effect of aerobic capacity on atrial function, especially in terms of cellular mechanisms, is not known. We aimed to investigate whether rats with low inborn maximal oxygen uptake (VO2 max) had impaired atrial myocyte contractile function when compared to rats with high inborn VO2 max. METHODS AND RESULTS: Atrial myocyte function was depressed in Low Capacity Runners (LCR) relative to High Capacity Runners (HCR) which was associated with impaired Ca(2+) handling. Fractional shortening was 52% lower at 2 Hz and 60% lower at 5 Hz stimulation while time to 50% relengthening was 43% prolonged and 55% prolonged, respectively. Differences in Ca(2+) amplitude and diastolic Ca(2+) level were observed at 5 Hz stimulation where Ca(2+) amplitude was 70% lower and diastolic Ca(2+) level was 11% higher in LCR rats. Prolonged time to 50% Ca(2+) decay was associated with reduced sarcoplasmic reticulum (SR) Ca(2+) ATPase function in LCR (39%). Na(+)/Ca(2+) exchanger activity was comparable between the groups. Diastolic SR Ca(2+) leak was increased by 109%. This could be partly explained by increased ryanodine receptors phosphorylation at the Ca(2+)-calmodulin-dependent protein kinase-II specific Ser-2814 site in LCR rats. T-tubules were present in 68% of HCR cells whereas only 33% LCR cells had these structures. In HCR, the significantly higher numbers of cells with T-tubules were combined with greater numbers of myocytes where Ca(2+) release in the cell occurred simultaneously in central and peripheral regions, giving rise to faster and more spatial homogenous Ca(2+)-signal onset. CONCLUSION: This data demonstrates that contrasting for low or high aerobic capacity leads to diverse functional and structural remodelling of atrial myocytes, with impaired contractile function in LCR compared to HCR rats.


Asunto(s)
Señalización del Calcio , Atrios Cardíacos/citología , Miocitos Cardíacos/fisiología , Aerobiosis , Animales , Separación Celular , Diástole , Contracción Miocárdica/fisiología , Consumo de Oxígeno/fisiología , Condicionamiento Físico Animal , Ratas , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo
17.
PLoS One ; 8(5): e62452, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658728

RESUMEN

The use of ß-blockers is mandatory for counteracting heart failure (HF)-induced chronic sympathetic hyperactivity, cardiac dysfunction and remodeling. Importantly, aerobic exercise training, an efficient nonpharmacological therapy to HF, also counteracts sympathetic hyperactivity in HF and improves exercise tolerance and cardiac contractility; the latter associated with changes in cardiac Ca(2+) handling. This study was undertaken to test whether combined ß-blocker and aerobic exercise training would integrate the beneficial effects of isolated therapies on cardiac structure, contractility and cardiomyocyte Ca(2+) handling in a genetic model of sympathetic hyperactivity-induced HF (α2A/α2C- adrenergic receptor knockout mice, KO). We used a cohort of 5-7 mo male wild-type (WT) and congenic mice (KO) with C57Bl6/J genetic background randomly assigned into 5 groups: control (WT), saline-treated KO (KOS), exercise trained KO (KOT), carvedilol-treated KO (KOC) and, combined carvedilol-treated and exercise-trained KO (KOCT). Isolated and combined therapies reduced mortality compared with KOS mice. Both KOT and KOCT groups had increased exercise tolerance, while groups receiving carvedilol had increased left ventricular fractional shortening and reduced cardiac collagen volume fraction compared with KOS group. Cellular data confirmed that cardiomyocytes from KOS mice displayed abnormal Ca(2+) handling. KOT group had increased intracellular peak of Ca(2+) transient and reduced diastolic Ca(2+) decay compared with KOS group, while KOC had increased Ca(2+) decay compared with KOS group. Notably, combined therapies re-established cardiomyocyte Ca(2+) transient paralleled by increased SERCA2 expression and SERCA2:PLN ratio toward WT levels. Aerobic exercise trained increased the phosphorylation of PLN at Ser(16) and Thr(17) residues in both KOT and KOCT groups, but carvedilol treatment reduced lipid peroxidation in KOC and KOCT groups compared with KOS group. The present findings provide evidence that the combination of carvedilol and aerobic exercise training therapies lead to a better integrative outcome than carvedilol or exercise training used in isolation.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carbazoles/farmacología , Terapia por Ejercicio , Insuficiencia Cardíaca/terapia , Contracción Miocárdica , Propanolaminas/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Presión Sanguínea , Señalización del Calcio , Carbazoles/uso terapéutico , Carvedilol , Células Cultivadas , Terapia Combinada , Evaluación Preclínica de Medicamentos , Tolerancia al Ejercicio , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Condicionamiento Físico Animal , Propanolaminas/uso terapéutico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Remodelación Ventricular
18.
J Magn Reson Imaging ; 38(6): 1388-94, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23559475

RESUMEN

PURPOSE: To evaluate late gadolinium-enhanced (LGE) assessment of infarct size, a comparison with manganese-enhanced magnetic resonance imaging (MEMRI), and histology was performed in a permanent infarction model in the mouse at the acute and chronic stage. MATERIALS AND METHODS: In a paired fashion at the acute and chronic stage after infarction (3-4 days and 21 days, respectively), LGE and MEMRI was performed using a self-gated fast low flip angle shot (FLASH). Infarct size was evaluated as the enhanced area relative to the complete myocardial wall area in a mid-ventricular slice. Paired comparisons were made between contrast agents and between timepoints, as well as to histology. RESULTS: At the acute stage, LGE delineated a larger infarct size as compared to both MEMRI and histology. Infarct size from LGE decreased from the acute to chronic stage, a temporal development not seen with MEMRI. At the chronic stage, no significant differences in infarct size were found between the methods. CONCLUSION: This study indicates an overenhancement of infarct size when using LGE, supported by an initial overestimation at the acute stage and a temporal decrease in infarct size from the acute to chronic stage, as compared to infarct size from MEMRI.


Asunto(s)
Técnicas de Imagen Sincronizada Cardíacas/métodos , Gadolinio DTPA/administración & dosificación , Aumento de la Imagen/métodos , Cloruro de Magnesio/administración & dosificación , Infarto del Miocardio/patología , Algoritmos , Animales , Medios de Contraste/administración & dosificación , Femenino , Interpretación de Imagen Asistida por Computador/métodos , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
IEEE Trans Med Imaging ; 32(7): 1265-76, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23549887

RESUMEN

Coherent plane wave compounding is a promising technique for achieving very high frame rate imaging without compromising image quality or penetration. However, this approach relies on the hypothesis that the imaged object is not moving during the compounded scan sequence, which is not the case in cardiovascular imaging. This work investigates the effect of tissue motion on retrospective transmit focusing in coherent compounded plane wave imaging (PWI). Two compound scan sequences were studied based on a linear and alternating sequence of tilted plane waves, with different timing characteristics. Simulation studies revealed potentially severe degradations in the retrospective focusing process, where both radial and lateral resolution was reduced, lateral shifts of the imaged medium were introduced, and losses in signal-to-noise ratio (SNR) were inferred. For myocardial imaging, physiological tissue displacements were on the order of half a wavelength, leading to SNR losses up to 35 dB, and reductions of contrast by 40 dB. No significant difference was observed between the different tilt sequences. A motion compensation technique based on cross-correlation was introduced, which significantly recovered the losses in SNR and contrast for physiological tissue velocities. Worst case losses in SNR and contrast were recovered by 35 dB and 27-35 dB, respectively. The effects of motion were demonstrated in vivo when imaging a rat heart. Using PWI, very high frame rates up to 463 fps were achieved at high image quality, but a motion correction scheme was then required.


Asunto(s)
Ecocardiografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Animales , Simulación por Computador , Movimiento/fisiología , Fantasmas de Imagen , Ratas , Relación Señal-Ruido
20.
Circ Res ; 110(11): 1474-83, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22511749

RESUMEN

RATIONALE: Increased activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is thought to promote heart failure (HF) progression. However, the importance of CaMKII phosphorylation of ryanodine receptors (RyR2) in HF development and associated diastolic sarcoplasmic reticulum Ca(2+) leak is unclear. OBJECTIVE: Determine the role of CaMKII phosphorylation of RyR2 in patients and mice with nonischemic and ischemic forms of HF. METHODS AND RESULTS: Phosphorylation of the primary CaMKII site S2814 on RyR2 was increased in patients with nonischemic, but not with ischemic, HF. Knock-in mice with an inactivated S2814 phosphorylation site were relatively protected from HF development after transverse aortic constriction compared with wild-type littermates. After transverse aortic constriction, S2814A mice did not exhibit pulmonary congestion and had reduced levels of atrial natriuretic factor. Cardiomyocytes from S2814A mice exhibited significantly lower sarcoplasmic reticulum Ca(2+) leak and improved sarcoplasmic reticulum Ca(2+) loading compared with wild-type mice after transverse aortic constriction. Interestingly, these protective effects on cardiac contractility were not observed in S2814A mice after experimental myocardial infarction. CONCLUSIONS: Our results suggest that increased CaMKII phosphorylation of RyR2 plays a role in the development of pathological sarcoplasmic reticulum Ca(2+) leak and HF development in nonischemic forms of HF such as transverse aortic constriction in mice.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Adulto , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Técnicas de Sustitución del Gen , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Contracción Miocárdica , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Serina , Factores de Tiempo , Regulación hacia Arriba , Función Ventricular Izquierda , Presión Ventricular , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...