Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(7): 107231, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37496675

RESUMEN

Histone deacetylases enzymes (HDACs) are chromatin modifiers that regulate gene expression through deacetylation of lysine residues within specific histone and non-histone proteins. A cell-specific gene expression pattern defines the identity of insulin-producing pancreatic ß cells, yet molecular networks driving this transcriptional specificity are not fully understood. Here, we investigated the HDAC-dependent molecular mechanisms controlling pancreatic ß-cell identity and function using the pan-HDAC inhibitor trichostatin A through chromatin immunoprecipitation assays and RNA sequencing experiments. We observed that TSA alters insulin secretion associated with ß-cell specific transcriptome programming in both mouse and human ß-cell lines, as well as on human pancreatic islets. We also demonstrated that this alternative ß-cell transcriptional program in response to HDAC inhibition is related to an epigenome-wide remodeling at both promoters and enhancers. Our data indicate that HDAC activity could be required to protect against loss of ß-cell identity with unsuitable expression of genes associated with alternative cell fates.

2.
Diabetes ; 72(8): 1112-1126, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216637

RESUMEN

The loss of pancreatic ß-cell identity has emerged as an important feature of type 2 diabetes development, but the molecular mechanisms are still elusive. Here, we explore the cell-autonomous role of the cell-cycle regulator and transcription factor E2F1 in the maintenance of ß-cell identity, insulin secretion, and glucose homeostasis. We show that the ß-cell-specific loss of E2f1 function in mice triggers glucose intolerance associated with defective insulin secretion, altered endocrine cell mass, downregulation of many ß-cell genes, and concomitant increase of non-ß-cell markers. Mechanistically, epigenomic profiling of the promoters of these non-ß-cell upregulated genes identified an enrichment of bivalent H3K4me3/H3K27me3 or H3K27me3 marks. Conversely, promoters of downregulated genes were enriched in active chromatin H3K4me3 and H3K27ac histone marks. We find that specific E2f1 transcriptional, cistromic, and epigenomic signatures are associated with these ß-cell dysfunctions, with E2F1 directly regulating several ß-cell genes at the chromatin level. Finally, the pharmacological inhibition of E2F transcriptional activity in human islets also impairs insulin secretion and the expression of ß-cell identity genes. Our data suggest that E2F1 is critical for maintaining ß-cell identity and function through sustained control of ß-cell and non-ß-cell transcriptional programs. ARTICLE HIGHLIGHTS: ß-Cell-specific E2f1 deficiency in mice impairs glucose tolerance. Loss of E2f1 function alters the ratio of α- to ß-cells but does not trigger ß-cell conversion into α-cells. Pharmacological inhibition of E2F activity inhibits glucose-stimulated insulin secretion and alters ß- and α-cell gene expression in human islets. E2F1 maintains ß-cell function and identity through control of transcriptomic and epigenetic programs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Humanos , Ratones , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Histonas/metabolismo , Homeostasis/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones Noqueados
3.
Cells ; 12(6)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980190

RESUMEN

Type 2 diabetes (T2D) is a metabolic disorder characterized by loss of pancreatic ß-cell function, decreased insulin secretion and increased insulin resistance, that affects more than 537 million people worldwide. Although several treatments are proposed to patients suffering from T2D, long-term control of glycemia remains a challenge. Therefore, identifying new potential drugs and targets that positively affect ß-cell function and insulin secretion remains crucial. Here, we developed an automated approach to allow the identification of new compounds or genes potentially involved in ß-cell function in a 384-well plate format, using the murine ß-cell model Min6. By using MALDI-TOF mass spectrometry, we implemented a high-throughput screening (HTS) strategy based on the automation of a cellular assay allowing the detection of insulin secretion in response to glucose, i.e., the quantitative detection of insulin, in a miniaturized system. As a proof of concept, we screened siRNA targeting well-know ß-cell genes and 1600 chemical compounds and identified several molecules as potential regulators of insulin secretion and/or synthesis, demonstrating that our approach allows HTS of insulin secretion in vitro.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Animales , Ratones , Insulina/metabolismo , Secreción de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ensayos Analíticos de Alto Rendimiento , Insulina Regular Humana/metabolismo
4.
Cell Rep ; 40(6): 111170, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947949

RESUMEN

The glucagon-like peptide 1 (Glp-1) has emerged as a hormone with broad pharmacological potential in type 2 diabetes (T2D) treatment, notably by improving ß cell functions. The cell-cycle regulator and transcription factor E2f1 is involved in glucose homeostasis by modulating ß cell mass and function. Here, we report that ß cell-specific genetic ablation of E2f1 (E2f1ß-/-) impairs glucose homeostasis associated with decreased expression of the Glp-1 receptor (Glp1r) in E2f1ß-/- pancreatic islets. Pharmacological inhibition of E2F1 transcriptional activity in nondiabetic human islets decreases GLP1R levels and blunts the incretin effect of GLP1R agonist exendin-4 (ex-4) on insulin secretion. Overexpressing E2f1 in pancreatic ß cells increases Glp1r expression associated with enhanced insulin secretion mediated by ex-4. Interestingly, ex-4 induces retinoblastoma protein (pRb) phosphorylation and E2f1 transcriptional activity. Our findings reveal critical roles for E2f1 in ß cell function and suggest molecular crosstalk between the E2F1/pRb and GLP1R signaling pathways.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Exenatida/farmacología , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
5.
Front Mol Neurosci ; 15: 841892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250480

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia. While impaired glucose homeostasis has been shown to increase AD risk and pathological loss of tau function, the latter has been suggested to contribute to the emergence of the glucose homeostasis alterations observed in AD patients. However, the links between tau impairments and glucose homeostasis, remain unclear. In this context, the present study aimed at investigating the metabolic phenotype of a new tau knock-in (KI) mouse model, expressing, at a physiological level, a human tau protein bearing the P301L mutation under the control of the endogenous mouse Mapt promoter. Metabolic investigations revealed that, while under chow diet tau KI mice do not exhibit significant metabolic impairments, male but not female tau KI animals under High-Fat Diet (HFD) exhibited higher insulinemia as well as glucose intolerance as compared to control littermates. Using immunofluorescence, tau protein was found colocalized with insulin in the ß cells of pancreatic islets in both mouse (WT, KI) and human pancreas. Isolated islets from tau KI and tau knock-out mice exhibited impaired glucose-stimulated insulin secretion (GSIS), an effect recapitulated in the mouse pancreatic ß-cell line (MIN6) following tau knock-down. Altogether, our data indicate that loss of tau function in tau KI mice and, particularly, dysfunction of pancreatic ß cells might promote glucose homeostasis impairments and contribute to metabolic changes observed in AD.

6.
Cells ; 11(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35053407

RESUMEN

Type 2 diabetes is characterized by chronic hyperglycemia associated with impaired insulin action and secretion. Although the heritability of type 2 diabetes is high, the environment, including blood components, could play a major role in the development of the disease. Amongst environmental effects, epitranscriptomic modifications have been recently shown to affect gene expression and glucose homeostasis. The epitranscriptome is characterized by reversible chemical changes in RNA, with one of the most prevalent being the m6A methylation of RNA. Since pancreatic ß cells fine tune glucose levels and play a major role in type 2 diabetes physiopathology, we hypothesized that the environment, through variations in blood glucose or blood free fatty acid concentrations, could induce changes in m6A methylation of RNAs in pancreatic ß cells. Here we observe a significant decrease in m6A methylation upon high glucose concentration, both in mice and human islets, associated with altered expression levels of m6A demethylases. In addition, the use of siRNA and/or specific inhibitors against selected m6A enzymes demonstrate that these enzymes modulate the expression of genes involved in pancreatic ß-cell identity and glucose-stimulated insulin secretion. Our data suggest that environmental variations, such as glucose, control m6A methylation in pancreatic ß cells, playing a key role in the control of gene expression and pancreatic ß-cell functions. Our results highlight novel causes and new mechanisms potentially involved in type 2 diabetes physiopathology and may contribute to a better understanding of the etiology of this disease.


Asunto(s)
Adenosina/análogos & derivados , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , ARN/metabolismo , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Metilación/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Palmitatos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Diabetes ; 67(7): 1310-1321, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29728363

RESUMEN

In type 2 diabetes (T2D), hepatic insulin resistance is strongly associated with nonalcoholic fatty liver disease (NAFLD). In this study, we hypothesized that the DNA methylome of livers from patients with T2D compared with livers of individuals with normal plasma glucose levels can unveil some mechanism of hepatic insulin resistance that could link to NAFLD. Using DNA methylome and transcriptome analyses of livers from obese individuals, we found that hypomethylation at a CpG site in PDGFA (encoding platelet-derived growth factor α) and PDGFA overexpression are both associated with increased T2D risk, hyperinsulinemia, increased insulin resistance, and increased steatohepatitis risk. Genetic risk score studies and human cell modeling pointed to a causative effect of high insulin levels on PDGFA CpG site hypomethylation, PDGFA overexpression, and increased PDGF-AA secretion from the liver. We found that PDGF-AA secretion further stimulates its own expression through protein kinase C activity and contributes to insulin resistance through decreased expression of insulin receptor substrate 1 and of insulin receptor. Importantly, hepatocyte insulin sensitivity can be restored by PDGF-AA-blocking antibodies, PDGF receptor inhibitors, and by metformin, opening therapeutic avenues. Therefore, in the liver of obese patients with T2D, the increased PDGF-AA signaling contributes to insulin resistance, opening new therapeutic avenues against T2D and possibly NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Obesidad/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Adulto , Estudios de Casos y Controles , Células Cultivadas , Metilación de ADN , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Epigénesis Genética/fisiología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Resistencia a la Insulina/genética , Hígado/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Transducción de Señal/genética , Regulación hacia Arriba/genética
8.
Chem Commun (Camb) ; 51(75): 14167-70, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26257079

RESUMEN

An electrochemical insulin-delivery system based on reduced graphene oxide impregnated with insulin is described. Upon application of a potential pulse of -0.8 V for 30 min, up to 70 ± 4% of human insulin was released into a physiological medium while preserving its biological activity.


Asunto(s)
Técnicas Electroquímicas , Grafito/química , Insulina/química , Óxidos/química , Electrodos , Humanos , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
9.
J Diabetes Res ; 2014: 195739, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25610877

RESUMEN

Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of type 2 diabetes. The diabetogenic effect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity inhibitor which prevents beta cell death elicited by cytokines, is beneficial for combating beta cell dysfunction caused by palmitate. We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. The protective effect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1, mimicked the effects of MS-275 on the expression of the two ER stress markers and apoptosis. These data point to HDAC3 as a potential drug target for preserving beta cells against lipotoxicity in diabetes.


Asunto(s)
Benzamidas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas , Células Secretoras de Insulina/efectos de los fármacos , Ácido Palmítico/toxicidad , Piridinas/farmacología , Factor de Transcripción Activador 3/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citoprotección , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/patología , Ratones , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Factor de Transcripción CHOP/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...