Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 3290, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620929

RESUMEN

In mitochondria, ß-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold ß-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane ß-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 ß-barrel opens a lateral gate to accommodate its substrates.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Detergentes/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Conformación Proteica , Pliegue de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Sordariales/genética , Sordariales/metabolismo
2.
Methods Mol Biol ; 2127: 1-11, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32112311

RESUMEN

Saccharomyces cerevisiae is a useful eukaryotic expression system for mitochondrial membrane proteins due to its ease of growth and ability to provide a native membrane environment. The development of the pBEVY vector system has further increased the potential of S. cerevisiae as an expression system by creating a method for expressing multiple proteins simultaneously. This vector system is amenable to the expression and purification of multi-subunit protein complexes. Here we describe the cloning, yeast transformation, and co-expression of multi-subunit outer mitochondrial membrane complexes using the pBEVY vector system.


Asunto(s)
Clonación Molecular/métodos , Proteínas de la Membrana , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fraccionamiento Celular/métodos , Regulación Fúngica de la Expresión Génica , Vectores Genéticos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/aislamiento & purificación , Proteínas Mitocondriales/metabolismo , Organismos Modificados Genéticamente , Multimerización de Proteína/genética , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformación Genética
3.
Proc Natl Acad Sci U S A ; 114(10): E1958-E1967, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223511

RESUMEN

The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.


Asunto(s)
Arginina/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/química , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arginina/metabolismo , Sitios de Unión , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Especificidad por Sustrato
4.
Biochemistry ; 54(41): 6303-11, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26394220

RESUMEN

ß-Barrel membrane proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria; however, exactly how they are folded and inserted remains unknown. Over the past decade, both functional and structural studies have greatly contributed to addressing this elusive mechanism. It is known that a conserved core machinery is required for each organelle, though the overall composition varies significantly. The vast majority of studies that aimed to understand the biogenesis of ß-barrel membrane proteins has been conducted in Gram-negative bacteria. Here, it is the task of a multicomponent complex known as the ß-barrel assembly machinery (BAM) complex to fold and insert new ß-barrel membrane proteins into the outer membrane. In this review, we will discuss recent discoveries with the goal of utilizing all reported structural and functional studies to piece together a current structural model for the fully assembled BAM complex.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacterias Gramnegativas/metabolismo , Proteínas de la Membrana Bacteriana Externa/análisis , Bacterias Gramnegativas/química , Bacterias Gramnegativas/citología , Modelos Moleculares , Mapas de Interacción de Proteínas , Estructura Secundaria de Proteína
5.
Philos Trans R Soc Lond B Biol Sci ; 370(1679)2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26370935

RESUMEN

Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a ß-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/biosíntesis , Bacterias Gramnegativas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Modelos Biológicos , Modelos Moleculares , Biosíntesis de Proteínas , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas
6.
Curr Opin Struct Biol ; 31: 35-42, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25796031

RESUMEN

The outer membranes (OM) of Gram-negative bacteria contain a host of ß-barrel outer membrane proteins (OMPs) which serve many functions for cell survival and virulence. The biogenesis of these OMPs is mediated by the ß-barrel assembly machinery (BAM) complex which is composed of five components including the essential core component called BamA that mediates the insertase function within the OM. The crystal structure of BamA has recently been reported from three different species, including a full-length structure from Neisseria gonorrhoeae. Mutagenesis and functional studies identified several conformational changes within BamA that are required for function, providing a significant advancement towards unraveling exactly how BamA and the BAM complex are able to fold and insert new OMPs in the OM.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacterias Gramnegativas , Estructura Secundaria de Proteína
7.
Mol Microbiol ; 92(1): 153-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24673795

RESUMEN

It has recently been shown that the biosynthetic route for both the d1 -haem cofactor of dissimilatory cd1 nitrite reductases and haem, via the novel alternative-haem-synthesis pathway, involves siroheme as an intermediate, which was previously thought to occur only as a cofactor in assimilatory sulphite/nitrite reductases. In many denitrifiers (which require d1 -haem), the pathway to make siroheme remained to be identified. Here we identify and characterize a sirohydrochlorin-ferrochelatase from Paracoccus pantotrophus that catalyses the last step of siroheme synthesis. It is encoded by a gene annotated as cbiX that was previously assumed to be encoding a cobaltochelatase, acting on sirohydrochlorin. Expressing this chelatase from a plasmid restored the wild-type phenotype of an Escherichia coli mutant-strain lacking sirohydrochlorin-ferrochelatase activity, showing that this chelatase can act in the in vivo siroheme synthesis. A ΔcbiX mutant in P. denitrificans was unable to respire anaerobically on nitrate, proving the role of siroheme as a precursor to another cofactor. We report the 1.9 Å crystal structure of this ferrochelatase. In vivo analysis of single amino acid variants of this chelatase suggests that two histidines, His127 and His187, are essential for siroheme synthesis. This CbiX can generally be identified in α-proteobacteria as the terminal enzyme of siroheme biosynthesis.


Asunto(s)
Proteínas Bacterianas/química , Dominio Catalítico , Ferroquelatasa/química , Hemo/análogos & derivados , Paracoccus pantotrophus/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Hemo/biosíntesis , Histidina/genética , Modelos Moleculares , Mutación , Paracoccus pantotrophus/genética , Estructura Terciaria de Proteína
8.
Nature ; 492(7428): 210-4, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23201679

RESUMEN

The twin-arginine translocation (Tat) pathway is one of two general protein transport systems found in the prokaryotic cytoplasmic membrane and is conserved in the thylakoid membrane of plant chloroplasts. The defining, and highly unusual, property of the Tat pathway is that it transports folded proteins, a task that must be achieved without allowing appreciable ion leakage across the membrane. The integral membrane TatC protein is the central component of the Tat pathway. TatC captures substrate proteins by binding their signal peptides. TatC then recruits TatA family proteins to form the active translocation complex. Here we report the crystal structure of TatC from the hyperthermophilic bacterium Aquifex aeolicus. This structure provides a molecular description of the core of the Tat translocation system and a framework for understanding the unique Tat transport mechanism.


Asunto(s)
Bacterias Gramnegativas/química , Bacterias Gramnegativas/metabolismo , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Sitios de Unión , Escherichia coli/genética , Bacterias Gramnegativas/genética , Proteínas de Transporte de Membrana/metabolismo , Unión Proteica , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
J Bacteriol ; 192(22): 6093-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20833800

RESUMEN

Here we show that the type III secretion gatekeeper protein SepL resembles an aberrant effector protein in binding to a class 1 type III secretion chaperone (Orf12, here renamed CesL). We also show that short N-terminal fragments (≤70 amino acids) from SepL are capable of targeting fusion proteins for secretion and translocation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Unión Proteica , Señales de Clasificación de Proteína , Transporte de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA