Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(14)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37823458

RESUMEN

Site-selective probing of iodine 4d orbitals at 13.1 nm was used to characterize the photolysis of CH2I2 and CH2BrI initiated at 202.5 nm. Time-dependent fragment ion momenta were recorded using Coulomb explosion imaging mass spectrometry and used to determine the structural dynamics of the dissociating molecules. Correlations between these fragment momenta, as well as the onset times of electron transfer reactions between them, indicate that each molecule can undergo neutral three-body photolysis. For CH2I2, the structural evolution of the neutral molecule was simultaneously characterized along the C-I and I-C-I coordinates, demonstrating the sensitivity of these measurements to nuclear motion along multiple degrees of freedom.

2.
Struct Dyn ; 10(5): 054302, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37799711

RESUMEN

Dynamical response of water exposed to x-rays is of utmost importance in a wealth of science areas. We exposed isolated water isotopologues to short x-ray pulses from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we identify significant structural dynamics with characteristic isotope effects in H2O2+, D2O2+, and HDO2+, such as asymmetric bond elongation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. A method to disentangle the sequences of events taking place upon the consecutive absorption of two x-ray photons is described. The obtained deep look into structural properties and dynamics of dissociating water isotopologues provides essential insights into the underlying mechanisms.

3.
Phys Chem Chem Phys ; 24(44): 27121-27127, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36342321

RESUMEN

During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.

4.
Nat Commun ; 12(1): 6107, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671016

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10-100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH*, PAH+* and PAH2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.

5.
Phys Rev Lett ; 127(9): 093202, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506178

RESUMEN

The interaction of intense femtosecond x-ray pulses with molecules sensitively depends on the interplay between multiple photoabsorptions, Auger decay, charge rearrangement, and nuclear motion. Here, we report on a combined experimental and theoretical study of the ionization and fragmentation of iodomethane (CH_{3}I) by ultraintense (∼10^{19} W/cm^{2}) x-ray pulses at 8.3 keV, demonstrating how these dynamics depend on the x-ray pulse energy and duration. We show that the timing of multiple ionization steps leading to a particular reaction product and, thus, the product's final kinetic energy, is determined by the pulse duration rather than the pulse energy or intensity. While the overall degree of ionization is mainly defined by the pulse energy, our measurement reveals that the yield of the fragments with the highest charge states is enhanced for short pulse durations, in contrast to earlier observations for atoms and small molecules in the soft x-ray domain. We attribute this effect to a decreased charge transfer efficiency at larger internuclear separations, which are reached during longer pulses.

6.
Phys Rev Lett ; 123(2): 023201, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386513

RESUMEN

We present a comprehensive experimental and theoretical study on superfluorescence in the extreme ultraviolet wavelength regime. Focusing a free-electron laser pulse in a cell filled with Xe gas, the medium is quasi-instantaneously population inverted by 4d-shell ionization on the giant resonance followed by Auger decay. On the timescale of ∼10 ps to ∼100 ps (depending on parameters) a macroscopic polarization builds up in the medium, resulting in superfluorescent emission of several Xe lines in the forward direction. As the number of emitters in the system is increased by either raising the pressure or the pump-pulse energy, the emission yield grows exponentially over four orders of magnitude and reaches saturation. With increasing yield, we observe line broadening, a manifestation of superfluorescence in the spectral domain. Our novel theoretical approach, based on a full quantum treatment of the atomic system and the irradiated field, shows quantitative agreement with the experiment and supports our interpretation.

7.
Phys Chem Chem Phys ; 21(26): 14090-14102, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30688948

RESUMEN

We report the results of a time-resolved coincident ion momentum imaging experiment probing nuclear wave packet dynamics in the strong-field ionization and dissociation of iodomethane (CH3I), a prototypical polyatomic system for photochemistry and ultrafast laser science. By measuring yields, kinetic energies, and angular distributions of CH3+ + I+ and CH3+ + I++ ion pairs as a function of the delay between two 25 fs, 790 nm pump and probe pulses, we map both, bound and dissociating nuclear wave packets in intermediate cationic states, thereby tracking different ionization and dissociation pathways. In both channels, we find oscillatory features with a 130 fs periodicity resulting from vibrational motion (C-I symmetric stretch mode) in the first electronically excited state of CH3I+. This vibrational wave packet dephases within 1 ps, in good agreement with a simple wave packet propagation model. Our results indicate that the first excited cationic state plays a key role in the dissociative ionization of CH3I and that it represents an important intermediate in the sequential double and multiple ionization at moderate intensities.

8.
Phys Rev Lett ; 120(10): 103001, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29570318

RESUMEN

A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O^{+}+C^{+}+S^{+} and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO^{2+} or CS^{2+}, before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS^{3+} breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

9.
Nature ; 546(7656): 129-132, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569799

RESUMEN

X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 1020 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 1020 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.


Asunto(s)
Cristalografía/métodos , Electrones , Rayos Láser , Proteínas/química , Rayos X , Yodo/química , Cinética , Fotones , Conformación Proteica , Electricidad Estática , Factores de Tiempo
10.
Nat Commun ; 7: 11652, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27212390

RESUMEN

New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.

11.
Faraday Discuss ; 171: 393-418, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25415561

RESUMEN

We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers.

12.
Phys Rev Lett ; 111(9): 093402, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24033032

RESUMEN

The lifetime of interatomic Coulombic decay (ICD) [L. S. Cederbaum et al., Phys. Rev. Lett. 79, 4778 (1997)] in Ne2 is determined via an extreme ultraviolet pump-probe experiment at the Free-Electron Laser in Hamburg. The pump pulse creates a 2s inner-shell vacancy in one of the two Ne atoms, whereupon the ionized dimer undergoes ICD resulting in a repulsive Ne+(2p(-1))-Ne+(2p(-1)) state, which is probed with a second pulse, removing a further electron. The yield of coincident Ne+-Ne2+ pairs is recorded as a function of the pump-probe delay, allowing us to deduce the ICD lifetime of the Ne2(+)(2s(-1)) state to be (150±50) fs, in agreement with quantum calculations.

13.
Nat Mater ; 12(4): 293-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23503010

RESUMEN

Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic material's microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (~ 1 ps) spin reversal than in present technologies.

14.
Phys Rev Lett ; 110(5): 053003, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23414017

RESUMEN

Ionization and fragmentation of methylselenol (CH(3)SeH) molecules by intense (>10(17) W/cm(2)) 5 fs x-ray pulses (hω=2 keV) are studied by coincident ion momentum spectroscopy. We contrast the measured charge state distribution with data on atomic Kr, determine kinetic energies of resulting ionic fragments, and compare them to the outcome of a Coulomb explosion model. We find signatures of ultrafast charge redistribution from the inner-shell ionized Se atom to its molecular partners, and observe significant displacement of the atomic constituents in the course of multiple ionization.

15.
Nat Commun ; 3: 1276, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23232406

RESUMEN

Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.

16.
Phys Rev Lett ; 108(24): 245005, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23004284

RESUMEN

The plasma dynamics of single mesoscopic Xe particles irradiated with intense femtosecond x-ray pulses exceeding 10(16) W/cm2 from the Linac Coherent Light Source free-electron laser are investigated. Simultaneous recording of diffraction patterns and ion spectra allows eliminating the influence of the laser focal volume intensity and particle size distribution. The data show that for clusters illuminated with intense x-ray pulses, highly charged ionization fragments in a narrow distribution are created and that the nanoplasma recombination is efficiently suppressed.

17.
Phys Rev Lett ; 108(21): 217402, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23003301

RESUMEN

We used photon pulses from an x-ray free-electron laser to study ultrafast x-ray-induced transitions of graphite from solid to liquid and plasma states. This was accomplished by isochoric heating of graphite samples and simultaneous probing via Bragg and diffuse scattering at high time resolution. We observe that disintegration of the crystal lattice and ion heating of up to 5 eV occur within tens of femtoseconds. The threshold fluence for Bragg-peak degradation is smaller and the ion-heating rate is faster than current x-ray-matter interaction models predict.

18.
Opt Express ; 20(12): 13501-12, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22714377

RESUMEN

The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.


Asunto(s)
Electrones , Imagenología Tridimensional/métodos , Rayos Láser , Simulación por Computador , Microscopía Electrónica de Transmisión , Hollín/análisis , Factores de Tiempo , Rayos X
19.
Nature ; 486(7404): 513-7, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22739316

RESUMEN

The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Fractales , Espectrometría de Masas , Movimiento (Física) , Hollín/análisis , Hollín/química , Aminoácidos/química , Electrones , Rayos Láser , Nanopartículas , Tamaño de la Partícula , Proteínas/química , Solventes/química , Vibración , Difracción de Rayos X
20.
Phys Rev Lett ; 104(25): 253002, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20867372

RESUMEN

Sequential multiple photoionization of the prototypical molecule N2 is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...