Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
One Health ; 17: 100658, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38116454

RESUMEN

This study investigated the influence of stress on release of Angiostrongylus cantonensis larvae from a snail host, Parmarion martensi. We subjected 140 infected, wild-caught P. martensi to three stress-inducing treatments (heat, molluscicide, physical disturbance) and an unstressed control treatment for 24 h, after which larval presence and abundance in the slime were quantified by qPCR targeting the ITS1 region of the parasite's DNA, and compared among treatments. The significance of stress and host infection load on larval release was determined by generalized linear mixed models and permutation tests. The results indicated that stress significantly increased the probability of larval presence in slime and the number of larvae released, and highly infected snails were also more likely to release larvae. Among stressed snails, 13.3% released larvae into slime, the number of larvae present in the slime ranging from 45.5 to 4216. Unstressed controls released no larvae. This study offers a partial explanation for conflicting results from prior studies regarding A. cantonensis presence in snail slime and sheds light on the broader One Health implications. Stress-induced larval release highlights the potential role of slime as a medium for pathogen transmission to accidental, paratenic, definitive and other intermediate hosts. These findings emphasize the importance of considering stress-mediated interactions in host-parasite systems and their implications for zoonotic disease emergence. As stressors continue to escalate because of anthropogenic activities and climate change, understanding the role of stress in pathogen shedding and transmission becomes increasingly important for safeguarding human and wildlife health within the One Health framework.

2.
Am J Trop Med Hyg ; 107(6): 1166-1172, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36343594

RESUMEN

Neuroangiostrongyliasis (NAS) is an emerging parasitic disease caused by the neurotropic nematode Angiostrongylus cantonensis. Since it was first discovered, in rats in southern China in the 1930s, this tropical to subtropical parasite has spread to much of Southeast Asia, the Pacific Islands (including Hawaii), Australia, Japan, South America, the southeastern United States, the Caribbean, Africa, the Canary Islands, and the Balearic Islands. The parasite completes its natural life cycle in snails and slugs (intermediate hosts), and rats (definitive hosts). Humans become accidental hosts after ingesting infective third-stage larvae contained within uncooked or undercooked intermediate or paratenic hosts, an event that sometimes results in NAS, also known as rat lungworm disease. Although A. cantonensis larvae cannot complete their life cycle in humans, their migration into the brain and spinal cord combined with a powerful inflammatory reaction often leads to eosinophilic meningitis and can, in rare instances, lead to coma, paralysis, and death or, in other cases, chronic, disabling neurologic sequelae. Symptoms of NAS are diverse, which often makes it difficult to diagnose. Treatment may include administration of analgesics, corticosteroids, anthelminthics, and repeat lumbar punctures to reduce intracranial pressure. Unfortunately, few medical providers, even in endemic areas, are familiar with A. cantonensis or its epidemiology, diagnosis, and treatment. As the parasite continues to spread and NAS affects more people, medical practitioners, as well as the general public, must become more aware of this emerging zoonosis and the potentially devastating harm it can cause.


Asunto(s)
Angiostrongylus cantonensis , Meningitis , Infecciones por Strongylida , Humanos , Ratas , Animales , Meningitis/diagnóstico , Caracoles/parasitología , Zoonosis , Estadios del Ciclo de Vida , Infecciones por Strongylida/tratamiento farmacológico , Infecciones por Strongylida/epidemiología , Infecciones por Strongylida/complicaciones
3.
Proc Natl Acad Sci U S A ; 119(33): e2204146119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35960845

RESUMEN

Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts' microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.


Asunto(s)
Ecosistema , Microbiota , Plantas , Animales , Bacterias , Plantas/microbiología
5.
Microb Ecol ; 84(3): 893-900, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34617123

RESUMEN

Microorganisms live in close association with metazoan hosts and form symbiotic microbiotas that modulate host biology. Although the function of host-associated microbiomes may change with composition, hosts within a population can exhibit high turnover in microbiome composition among individuals. However, environmental drivers of this variation are inadequately described. Here, we test the hypothesis that this diversity among the microbiomes of Aedes albopictus (a mosquito disease vector) is associated with the local climate and land-use patterns on the high Pacific island of O 'ahu, Hawai 'i. Our principal finding demonstrates that the relative abundance of several bacterial symbionts in the Ae. albopictus microbiome varies in response to a landscape-scale moisture gradient, resulting in the turnover of the mosquito microbiome composition across the landscape. However, we find no evidence that mosquito microbiome diversity is tied to an index of urbanization. This result has implications toward understanding the assembly of host-associated microbiomes, especially during an era of rampant global climate change.


Asunto(s)
Aedes , Microbiota , Animales , Humanos , Aedes/microbiología , Mosquitos Vectores/fisiología , Vectores de Enfermedades , Urbanización
6.
Acta Trop ; 216: 105824, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33422544

RESUMEN

Diverse snail species serve as intermediate hosts of the parasitic nematode Angiostrongylus cantonensis, the etiological agent of human neuroangiostrongyliasis. However, levels of A. cantonensis infection prevalence and intensity vary dramatically among these host species. Factors contributing to this variation are largely unknown. Environmental factors, such as precipitation and temperature, have been correlated with overall A. cantonensis infection levels in a locale, but the influence of environment on infection in individual snail species has not been addressed. We identified levels of A. cantonensis prevalence and intensity in 16 species of snails collected from 29 sites along an environmental gradient on the island of Oahu, Hawaii. The relationship between infection levels of individual species and their environment was evaluated using AIC model selection of Generalized Linear Mixed Models incorporating precipitation, temperature, and vegetation cover at each collection site. Our results indicate that different mechanisms drive parasite prevalence and intensity in the intermediate hosts. Overall, snails from rainy, cool, green sites had higher infection levels than snails from dry, hot sites with less green vegetation. Intensity increased at the same rate along the environmental gradient in all species, though at different levels, while the relation between prevalence and environmental variables depended on species. These results have implications for zoonotic transmission, as human infection is a function of infection in the intermediate hosts, ingestion of which is the main pathway of transmission. The probability of human infection is greater in locations with higher rainfall, lower temperature and more vegetation cover because of higher infection prevalence in the gastropod hosts, but this depends on the host species. Moreover, severity of neuroangiostrongyliasis symptoms is likely to be greater in locations with higher rainfall, lower temperature, and more vegetation because of the higher numbers of infectious larvae (infection intensity) in all infected snail species. This study highlights the variation of infection prevalence and intensity in individual gastropod species, the individualistic nature of interactions between host species and their environment, and the implications for human neuroangiostrongyliasis in different environments.


Asunto(s)
Angiostrongylus cantonensis/aislamiento & purificación , Ambiente , Gastrópodos/parasitología , Infecciones por Strongylida/epidemiología , Angiostrongylus cantonensis/genética , Animales , ADN de Helmintos , Hawaii , Especificidad del Huésped , Humanos , Modelos Lineales , Conceptos Meteorológicos , Parasitología/métodos , Reacción en Cadena de la Polimerasa , Prevalencia , Ratas , Análisis de Secuencia de ADN , Infecciones por Strongylida/parasitología
7.
ISME J ; 15(4): 999-1009, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33188299

RESUMEN

Plant microbiomes are shaped by forces working at different spatial scales. Environmental factors determine a pool of potential symbionts while host physiochemical factors influence how those microbes associate with distinct plant tissues. These scales are seldom considered simultaneously, despite their potential to interact. Here, we analyze epiphytic microbes from nine Hibiscus tiliaceus trees across a steep, but short, environmental gradient within a single Hawaiian watershed. At each location, we sampled eight microhabitats: leaves, petioles, axils, stems, roots, and litter from the plant, as well as surrounding air and soil. The composition of bacterial communities is better explained by microhabitat, while location better predicted compositional variance for fungi. Fungal community compositional dissimilarity increased more rapidly along the gradient than did bacterial composition. Additionally, the rates of fungal community compositional dissimilarity along the gradient differed among plant parts, and these differences influenced the distribution patterns and range size of individual taxa. Within plants, microbes were compositionally nested such that aboveground communities contained a subset of the diversity found belowground. Our findings indicate that both environmental context and microhabitat contribute to microbial compositional variance in our study, but that these contributions are influenced by the domain of microbe and the specific microhabitat in question, suggesting a complicated and potentially interacting dynamic.


Asunto(s)
Hongos , Plantas , Bacterias/genética , Hongos/genética , Hawaii , Raíces de Plantas , Microbiología del Suelo
8.
Ecohealth ; 17(2): 183-193, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32676832

RESUMEN

Angiostrongylus cantonensis, the rat lungworm, is an emerging zoonotic pathogen that cycles between definitive rat and intermediate gastropod hosts. Zoonotic infection occurs when humans intentionally or accidentally consume infectious larvae in a gastropod host, and may manifest as neuroangiostrongyliasis, characterized by eosinophilic meningitis, severe neurological impairment, and even death. Thus, the risk of A. cantonensis zoonoses may be related to the distribution of A. cantonensis larvae across gastropod hosts. We screened 16 gastropod species from 14 communities on the island of O'ahu, Hawai'i, USA, to characterize the distribution of A. cantonensis among species and across host size. Prevalence (proportion of the population infected) and infection intensity (density of worms in host tissue) varied among gastropod species. Prevalence also varied with gastropod host size, but this relationship differed among host species. Most host species showed a positive increase in the probability of infection with host size, suggesting that within species relatively larger hosts had higher prevalence. The density of worms in an infected snail was unrelated to host size. These results suggest that variation in A. cantonensis infection is associated with demographic structure and composition of gastropod communities, which could underlie heterogeneity in the risk of human angiostrongyliasis across landscapes.


Asunto(s)
Angiostrongylus cantonensis , Helmintiasis Animal/epidemiología , Animales , Hawaii/epidemiología , Islas , Prevalencia , Ratas , Zoonosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...