Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Matern Fetal Neonatal Med ; 35(25): 7676-7684, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34465258

RESUMEN

OBJECTIVE: Human milk (HM) insulin plays many roles for the infant, especially for the newborn. We hypothesized HM insulin in women with type 2 diabetes (T2DM) would be higher than BMI-matched women with either gestational diabetes (GDM) or normal glucose tolerance (NGT). In T2DM, we also assessed macronutrient composition and relationships between maternal glycemic control and HM insulin. STUDY DESIGN: HM was characterized at 2-weeks postpartum among three BMI-matched groups: T2DM (n= 12), diet-controlled GDM (n= 12), and NGT (n= 12). In T2DM, additional fasting and postprandial HM samples were collected while wearing a continuous glucose monitor (CGM), as well as fasting and 90-minute postprandial samples after a standardized meal at 1-2 weeks postpartum. RESULTS: Fasting HM insulin was two times higher in T2DM compared to GDM and NGT (p < .001), which were not different from each other. Among T2DM, fasting (p < .001) and postprandial (p = .01) HM insulin levels were between 2 and 5× higher than plasma. Postprandial HM insulin (p = .03) and glucose (p < .001) were increased compared to fasting. Mean nocturnal glucose (p < .01) and maternal hemoglobin A1c (p < .01) positively associated with fasting HM insulin. CONCLUSIONS: These data are the first to show HM insulin concentrations are doubled in T2DM compared to BMI-matched GDM and NGT. In HM of T2DM, insulin increases postprandially, may be concentrated relative to plasma, and is influenced by maternal glycemic control, with potential clinical implications that merit further study.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Hiperinsulinismo , Resistencia a la Insulina , Embarazo , Recién Nacido , Femenino , Humanos , Prueba de Tolerancia a la Glucosa , Leche Humana , Glucemia , Insulina
2.
J Mammary Gland Biol Neoplasia ; 25(4): 367-387, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33216249

RESUMEN

Cells in human milk are an untapped source, as potential "liquid breast biopsies", of material for investigating lactation physiology in a non-invasive manner. We used single cell RNA sequencing (scRNA-seq) to identify milk-derived mammary epithelial cells (MECs) and their transcriptional signatures in women with diet-controlled gestational diabetes (GDM) with normal lactation. Methodology is described for coordinating milk collections with single cell capture and library preparation via cryopreservation, in addition to scRNA-seq data processing and analyses of MEC transcriptional signatures. We comprehensively characterized 3740 cells from milk samples from two mothers at two weeks postpartum. Most cells (>90%) were luminal MECs (luMECs) expressing lactalbumin alpha and casein beta and positive for keratin 8 and keratin 18. Few cells were keratin 14+ basal MECs and a small immune cell population was present (<10%). Analysis of differential gene expression among clusters identified six potentially distinct luMEC subpopulation signatures, suggesting the potential for subtle functional differences among luMECs, and included one cluster that was positive for both progenitor markers and mature milk transcripts. No expression of pluripotency markers POU class 5 homeobox 1 (POU5F1, encoding OCT4) SRY-box transcription factor 2 (SOX2) or nanog homeobox (NANOG), was observed. These observations were supported by flow cytometric analysis of MECs from mature milk samples from three women with diet-controlled GDM (2-8 mo postpartum), indicating a negligible basal/stem cell population (epithelial cell adhesion molecule (EPCAM)-/integrin subunit alpha 6 (CD49f)+, 0.07%) and a small progenitor population (EPCAM+/CD49f+, 1.1%). We provide a computational framework for others and future studies, as well as report the first milk-derived cells to be analyzed by scRNA-seq. We discuss the clinical potential and current limitations of using milk-derived cells as material for characterizing human mammary physiology.


Asunto(s)
Biología Computacional/métodos , Diabetes Gestacional/metabolismo , Lactancia/fisiología , Glándulas Mamarias Humanas/metabolismo , Leche Humana/citología , Adulto , Diabetes Gestacional/dietoterapia , Células Epiteliales/metabolismo , Femenino , Citometría de Flujo , Humanos , Glándulas Mamarias Humanas/citología , Periodo Posparto/metabolismo , Embarazo , RNA-Seq/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Análisis de la Célula Individual , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...