Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Heliyon ; 10(11): e31965, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841455

RESUMEN

Generative Artificial Intelligence foundation models (for example Generative Pre-trained Transformer - GPT - models) can generate the next token given a sequence of tokens. How can this 'generative AI' be compared with the 'real' intelligence of the human brain, when for example a human generates a whole memory in response to an incomplete retrieval cue, and then generates further prospective thoughts? Here these two types of generative intelligence, artificial in machines and real in the human brain are compared, and it is shown how when whole memories are generated by hippocampal recall in response to an incomplete retrieval cue, what the human brain computes, and how it computes it, are very different from generative AI. Key differences are the use of local associative learning rules in the hippocampal memory system, and of non-local backpropagation of error learning in AI. Indeed, it is argued that the whole operation of the human brain is performed computationally very differently to what is implemented in generative AI. Moreover, it is emphasized that the primate including human hippocampal system includes computations about spatial view and where objects and people are in scenes, whereas in rodents the emphasis is on place cells and path integration by movements between places. This comparison with generative memory and processing in the human brain has interesting implications for the further development of generative AI and for neuroscience research.

2.
Prog Neurobiol ; 238: 102636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834132

RESUMEN

We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.


Asunto(s)
Hipocampo , Humanos , Hipocampo/fisiología , Animales , Modelos Neurológicos , Memoria Episódica
3.
Brain Struct Funct ; 229(6): 1471-1493, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839620

RESUMEN

Connectivity maps are now available for the 360 cortical regions in the Human Connectome Project Multimodal Parcellation atlas. Here we add function to these maps by measuring selective fMRI activations and functional connectivity increases to stationary visual stimuli of faces, scenes, body parts and tools from 956 HCP participants. Faces activate regions in the ventrolateral visual cortical stream (FFC), in the superior temporal sulcus (STS) visual stream for face and head motion; and inferior parietal visual (PGi) and somatosensory (PF) regions. Scenes activate ventromedial visual stream VMV and PHA regions in the parahippocampal scene area; medial (7m) and lateral parietal (PGp) regions; and the reward-related medial orbitofrontal cortex. Body parts activate the inferior temporal cortex object regions (TE1p, TE2p); but also visual motion regions (MT, MST, FST); and the inferior parietal visual (PGi, PGs) and somatosensory (PF) regions; and the unpleasant-related lateral orbitofrontal cortex. Tools activate an intermediate ventral stream area (VMV3, VVC, PHA3); visual motion regions (FST); somatosensory (1, 2); and auditory (A4, A5) cortical regions. The findings add function to cortical connectivity maps; and show how stationary visual stimuli activate other cortical regions related to their associations, including visual motion, somatosensory, auditory, semantic, and orbitofrontal cortex value-related, regions.


Asunto(s)
Mapeo Encefálico , Hipocampo , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Hipocampo/fisiología , Hipocampo/diagnóstico por imagen , Adulto Joven , Estimulación Luminosa , Conectoma , Cara , Vías Nerviosas/fisiología , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Percepción Visual/fisiología , Reconocimiento Visual de Modelos/fisiología
4.
Neurosci Biobehav Rev ; 160: 105650, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574782

RESUMEN

ROLLS, E. T. Two What, Two Where, Visual Cortical Streams in Humans. NEUROSCI BIOBEHAV REV 2024. Recent cortical connectivity investigations lead to new concepts about 'What' and 'Where' visual cortical streams in humans, and how they connect to other cortical systems. A ventrolateral 'What' visual stream leads to the inferior temporal visual cortex for object and face identity, and provides 'What' information to the hippocampal episodic memory system, the anterior temporal lobe semantic system, and the orbitofrontal cortex emotion system. A superior temporal sulcus (STS) 'What' visual stream utilising connectivity from the temporal and parietal visual cortex responds to moving objects and faces, and face expression, and connects to the orbitofrontal cortex for emotion and social behaviour. A ventromedial 'Where' visual stream builds feature combinations for scenes, and provides 'Where' inputs via the parahippocampal scene area to the hippocampal episodic memory system that are also useful for landmark-based navigation. The dorsal 'Where' visual pathway to the parietal cortex provides for actions in space, but also provides coordinate transforms to provide inputs to the parahippocampal scene area for self-motion update of locations in scenes in the dark or when the view is obscured.


Asunto(s)
Lóbulo Temporal , Corteza Visual , Humanos , Lóbulo Parietal , Vías Visuales , Emociones
5.
Mol Psychiatry ; 29(4): 914-928, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38212376

RESUMEN

We describe evidence for dissociable roles of the medial and lateral orbitofrontal cortex (OFC) in major depressive disorder (MDD) from structure, functional activation, functional connectivity, metabolism, and neurochemical systems. The reward-related medial orbitofrontal cortex has lower connectivity and less reward sensitivity in MDD associated with anhedonia symptoms; and the non-reward related lateral OFC has higher functional connectivity and more sensitivity to non-reward/aversive stimuli in MDD associated with negative bias symptoms. Importantly, we propose that conventional antidepressants act to normalize the hyperactive lateral (but not medial) OFC to reduce negative bias in MDD; while other treatments are needed to operate on the medial OFC to reduce anhedonia, with emerging evidence suggesting that ketamine may act in this way. The orbitofrontal cortex is the key cortical region in emotion and reward, and the current review presents much new evidence about the different ways that the medial and lateral OFC are involved in MDD.


Asunto(s)
Anhedonia , Trastorno Depresivo Mayor , Corteza Prefrontal , Recompensa , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Anhedonia/fisiología , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Ketamina/uso terapéutico , Ketamina/farmacología , Emociones/fisiología
6.
Biol Psychiatry ; 95(12): 1122-1132, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38199582

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) interacts with psychopathology in a complex way; however, little is known about the underlying brain, biochemical, and genetic mechanisms. METHODS: To clarify the phenotypic and genetic associations between IBS and brain health, we performed a comprehensive retrospective cohort study on a large population. Our study included 171,104 participants from the UK Biobank who underwent a thorough assessment of IBS, with the majority also providing neuroimaging, behavioral, biochemical, and genetic information. Multistage linked analyses were conducted, including phenome-wide association analysis, polygenic risk score calculation, and 2-sample Mendelian randomization analysis. RESULTS: The phenome-wide association analysis showed that IBS was linked to brain health problems, including anxiety and depression, and poor cognitive performance. Significantly lower brain volumes associated with more severe IBS were found in key areas related to emotional regulation and higher-order cognition, including the medial orbitofrontal cortex/ventromedial prefrontal cortex, anterior insula, anterior and mid-cingulate cortices, dorsolateral prefrontal cortex, and hippocampus. Higher triglycerides, lower high-intensity lipoprotein, and lower platelets were also related (p < 1 × 10-10) to more severe IBS. Finally, Mendelian randomization analyses demonstrated potential causal relationships between IBS and brain health and indicated possible mediating effects of dyslipidemia and inflammation. CONCLUSIONS: For the first time, this study provides a comprehensive understanding of the relationship between IBS and brain health phenotypes, integrating perspectives from neuroimaging, behavioral performance, biochemical factors, and genetics, which is of great significance for clinical applications to potentially address brain health impairments in patients with IBS.


Asunto(s)
Encéfalo , Síndrome del Colon Irritable , Neuroimagen , Humanos , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/diagnóstico por imagen , Femenino , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Persona de Mediana Edad , Estudios Retrospectivos , Análisis de la Aleatorización Mendeliana , Adulto , Anciano , Fenotipo , Imagen por Resonancia Magnética , Ansiedad/genética , Ansiedad/diagnóstico por imagen , Estudio de Asociación del Genoma Completo
7.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37991264

RESUMEN

The frontal pole is implicated in humans in whether to exploit resources versus explore alternatives. Effective connectivity, functional connectivity, and tractography were measured between six human frontal pole regions and for comparison 13 dorsolateral and dorsal prefrontal cortex regions, and the 360 cortical regions in the Human Connectome Project Multi-modal-parcellation atlas in 171 HCP participants. The frontal pole regions have effective connectivity with Dorsolateral Prefrontal Cortex regions, the Dorsal Prefrontal Cortex, both implicated in working memory; and with the orbitofrontal and anterior cingulate cortex reward/non-reward system. There is also connectivity with temporal lobe, inferior parietal, and posterior cingulate regions. Given this new connectivity evidence, and evidence from activations and damage, it is proposed that the frontal pole cortex contains autoassociation attractor networks that are normally stable in a short-term memory state, and maintain stability in the other prefrontal networks during stable exploitation of goals and strategies. However, if an input from the orbitofrontal or anterior cingulate cortex that expected reward, non-reward, or punishment is received, this destabilizes the frontal pole and thereby other prefrontal networks to enable exploration of competing alternative goals and strategies. The frontal pole connectivity with reward systems may be key in exploit versus explore.


Asunto(s)
Conectoma , Lóbulo Parietal , Humanos , Imagen por Resonancia Magnética , Lóbulo Frontal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Lóbulo Temporal
8.
Brain Struct Funct ; 229(1): 47-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37861743

RESUMEN

Sex differences in human brain structure and function are important, partly because they are likely to be relevant to the male-female differences in behavior and in mental health. To analyse sex differences in cortical function, functional connectivity was measured in 36,531 participants (53% female) in the UK Biobank (mean age 69) using the Human Connectome Project multimodal parcellation atlas with 360 well-specified cortical regions. Most of the functional connectivities were lower in females (Bonferroni corrected), with the mean Cohen's d = - 0.18. Removing these as covariates reduced the difference of functional connectivities for females-males from d = - 0.18 to - 0.06. The lower functional connectivities in females were especially of somatosensory/premotor regions including the insula, opercular cortex, paracentral lobule and mid-cingulate cortex, and were correlated with lower maximum workload (r = 0.17), and with higher whole body fat mass (r = - 0.17). But some functional connectivities were higher in females, involving especially the ventromedial prefrontal cortex and posterior cingulate cortex, and these were correlated with higher liking for some rewards such as sweet foods, higher happiness/subjective well-being, and with better memory-related functions. The main findings were replicated in 1000 individuals (532 females, mean age 29) from the Human Connectome Project. This investigation shows the cortical systems with different functional connectivity between females and males, and also provides for the first time a foundation for understanding the implications for behavior of these differences between females and males.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Anciano , Adulto , Encéfalo , Recompensa , Composición Corporal
9.
Cereb Cortex ; 33(20): 10686-10701, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689834

RESUMEN

The hierarchical organization between 25 ventral stream visual cortical regions and 180 cortical regions was measured with magnetoencephalography using the Human Connectome Project Multimodal Parcellation atlas in 83 Human Connectome Project participants performing a visual memory task. The aim was to reveal the hierarchical organization using a whole-brain model based on generative effective connectivity with this fast neuroimaging method. V1-V4 formed a first group of interconnected regions. Especially V4 had connectivity to a ventrolateral visual stream: V8, the fusiform face cortex, and posterior inferior temporal cortex PIT. These regions in turn had effectivity connectivity to inferior temporal cortex visual regions TE2p and TE1p. TE2p and TE1p then have connectivity to anterior temporal lobe regions TE1a, TE1m, TE2a, and TGv, which are multimodal. In a ventromedial visual stream, V1-V4 connect to ventromedial regions VMV1-3 and VVC. VMV1-3 and VVC connect to the medial parahippocampal gyrus PHA1-3, which, with the VMV regions, include the parahippocampal scene area. The medial parahippocampal PHA1-3 regions have connectivity to the hippocampal system regions the perirhinal cortex, entorhinal cortex, and hippocampus. These effective connectivities of two ventral visual cortical streams measured with magnetoencephalography provide support to the hierarchical organization of brain systems measured with fMRI, and new evidence on directionality.


Asunto(s)
Magnetoencefalografía , Lóbulo Temporal , Humanos , Lóbulo Temporal/diagnóstico por imagen , Hipocampo , Giro Parahipocampal , Corteza Entorrinal , Imagen por Resonancia Magnética
10.
Elife ; 122023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37399053

RESUMEN

Close friendships are important for mental health and cognition in late childhood. However, whether the more close friends the better, and the underlying neurobiological mechanisms are unknown. Using the Adolescent Brain Cognitive Developmental study, we identified nonlinear associations between the number of close friends, mental health, cognition, and brain structure. Although few close friends were associated with poor mental health, low cognitive functions, and small areas of the social brain (e.g., the orbitofrontal cortex, the anterior cingulate cortex, the anterior insula, and the temporoparietal junction), increasing the number of close friends beyond a level (around 5) was no longer associated with better mental health and larger cortical areas, and was even related to lower cognition. In children having no more than five close friends, the cortical areas related to the number of close friends revealed correlations with the density of µ-opioid receptors and the expression of OPRM1 and OPRK1 genes, and could partly mediate the association between the number of close friends, attention-deficit/hyperactivity disorder (ADHD) symptoms, and crystalized intelligence. Longitudinal analyses showed that both too few and too many close friends at baseline were associated with more ADHD symptoms and lower crystalized intelligence 2 y later. Additionally, we found that friendship network size was nonlinearly associated with well-being and academic performance in an independent social network dataset of middle-school students. These findings challenge the traditional idea of 'the more, the better,' and provide insights into potential brain and molecular mechanisms.


Close friendships are crucial during the transition from late childhood to adolescence as children become more independent from their parents and influenced by their peers. The brain undergoes a tremendous amount of development during this period, and it is also a time when mental health disorders often begin to emerge. Scientists are still learning about how friendships shape brain development and mental health during this transition. Maintaining friendships takes time and mental resources so there may be limits on how many friends are beneficial. Here, Shen, Rolls et al. show that the having more friends is not always directly related to better mental health and cognitive abilities. In the study, Shen, Rolls et al. analyzed data from nearly 7,500 young people between around 10 to 12 years old: this included, their number of close friends, their mental health and cognitive abilities such as working memory, attention and processing speed, and images of their brains. Data from a second set of about 16,000 young people were then analyzed to confirm the results. Shen, Rolls et al. found having a higher number of close friends was associated with improved mental health and cognitive ability. However, this association stopped once around five friends had been reached, after which having more friends was no longer linked to better mental health and was even correlated with lower cognition. Additionally, individuals with too few or too many friends had more symptoms of Attention-deficit/hyperactivity disorder (ADHD) and were less able to learn from their experiences. This non-linear relationship between number of friends and mental health and cognitive abilities can be partly explained by the structure of the brain. Shen, Rolls et al. found that brain regions associated with friendship were larger in individuals with more close friends, but did not increase any further once the number of friends a person had exceeded five individuals with around five close friends also had more of a receptor that is part of the opioid system, which may make them more responsive to laughter, friendly touch, or other positive social interactions. These findings challenge the idea that having more friends is always better. It also provides insights into how friendships affect brain health during the transition from late childhood to adolescence. Insights from this study may aid the development of interventions to support healthy brain development during youth.


Asunto(s)
Amigos , Salud Mental , Adolescente , Humanos , Niño , Amigos/psicología , Grupo Paritario , Cognición , Encéfalo
11.
Brain Struct Funct ; 228(5): 1201-1257, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37178232

RESUMEN

The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.


Asunto(s)
Giro del Cíngulo , Motivación , Humanos , Giro del Cíngulo/fisiología , Emociones/fisiología , Amígdala del Cerebelo/fisiología , Corteza Prefrontal/fisiología , Recompensa
12.
Hippocampus ; 33(5): 667-687, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37035903

RESUMEN

A commentary is provided on issues raised in the Special Issue of Hippocampus (2023) on hippocampal system view representations. First, the evidence for hippocampal and parahippocampal spatial view cells in primates including humans shows that the allocentric representations provided by at least some of these cells are very useful for human memory in that where objects and rewards are seen in the world "out there" is a key component of episodic memory and navigation. Spatial view cell representations provide for memory and navigation to be independent of the place where the individual is currently located and of the egocentric coordinates of the viewed location and the facing direction of the individual. Second, memory and navigation in humans are normally related to the visual cues encoded by spatial view cells that define a location "out there" such as a building, hill, and so forth, not to an unmarked place without local cues and identified only by distant environmental/room cues. Third, "mixed" representations, for example of particular combinations of spatial view and place, can arise if the training has been for only some combinations of place and view, for that is what can then be learned by the hippocampus. Fourth, rodents, with their much less good visual acuity (~1 cycle/° in rats, compared with ~60 cycles/° for the human fovea), and rodents' very wide viewing angle for the world (~270°) might be expected, when using the same computational mechanisms as in primates, to use widely spaced environmental cues to define a place where the rodent is located, supported by inputs about place using local olfactory and tactile cues. Fifth, it is shown how view-point dependent allocentric representations could form a view-point independent allocentric representation for memory and navigation. Sixth, concept cells in humans and primates with connectivity to the hippocampus are compared.


Asunto(s)
Células de Lugar , Navegación Espacial , Humanos , Ratas , Animales , Neuronas , Primates , Hipocampo , Señales (Psicología) , Percepción Espacial
14.
Biol Psychiatry ; 93(9): 790-801, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36788058

RESUMEN

BACKGROUND: Considerable uncertainty remains regarding associations of multiple risk factors with Alzheimer's disease (AD). We aimed to systematically screen and validate a wide range of potential risk factors for AD. METHODS: Among 502,493 participants from the UK Biobank, baseline data were extracted for 4171 factors spanning 10 different categories. Phenome-wide association analyses and time-to-event analyses were conducted to identify factors associated with both polygenic risk scores for AD and AD diagnosis at follow-up. We performed two-sample Mendelian randomization analysis to further assess their potential causal relationships with AD and imaging association analysis to discover underlying mechanisms. RESULTS: We identified 39 factors significantly associated with both AD polygenic risk scores and risk of incident AD, where higher levels of education, body size, basal metabolic rate, fat-free mass, computer use, and cognitive functions were associated with a decreased risk of developing AD, and selective food intake and more outdoor exposures were associated with an increased risk of developing AD. The identified factors were also associated with AD-related brain structures, including the hippocampus, entorhinal cortex, and inferior/middle temporal cortex, and 21 of these factors were further supported by Mendelian randomization evidence. CONCLUSIONS: To our knowledge, this is the first study to comprehensively and rigorously assess the effects of wide-ranging risk factors on AD. Strong evidence was found for fat-free body mass, basal metabolic rate, computer use, selective food intake, and outdoor exposures as new risk factors for AD. Integration of genetic, clinical, and neuroimaging information may help prioritize risk factors and prevention targets for AD.


Asunto(s)
Enfermedad de Alzheimer , Análisis de la Aleatorización Mendeliana , Humanos , Estudios Prospectivos , Enfermedad de Alzheimer/genética , Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Reino Unido/epidemiología , Polimorfismo de Nucleótido Simple
15.
Hum Brain Mapp ; 44(6): 2479-2492, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36799566

RESUMEN

Some lifestyle factors are related to health and brain function and structure, but the brain systems involved are incompletely understood. A general linear model was used to test the associations of the combined and separate lifestyle risk measures of alcohol use, smoking, diet, amounts of physical activity, leisure activity, and mobile phone use, with brain functional connectivity with the high resolution Human Connectome Project (HCP) atlas in 19,415 participants aged 45-78 from the UK Biobank, with replication with HCP data. Higher combined lifestyle risk scores were associated with lower functional connectivity across the whole brain, but especially of three brain systems. Low physical, and leisure and social, activity were associated with low connectivities of the somatosensory/motor cortical regions and of hippocampal memory-related regions. Low mobile phone use, perhaps indicative of poor social communication channels, was associated with low functional connectivity of brain regions in and related to the superior temporal sulcus that are involved in social behavior and face processing. Smoking was associated with lower functional connectivity of especially frontal regions involved in attention. Lower cortical thickness in some of these regions, and also lower subcortical volume of the hippocampus, amygdala, and globus pallidus, were also associated with the sum of the poor lifestyle scores. This very large scale analysis emphasizes how the lifestyle of humans relates to their brain structure and function, and provides a foundation for understanding the causalities that relate to the differences found here in the brains of different individuals.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Consumo de Bebidas Alcohólicas , Estilo de Vida
16.
Commun Biol ; 6(1): 99, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697483

RESUMEN

How bilingual brains accomplish the processing of more than one language has been widely investigated by neuroimaging studies. The assimilation-accommodation hypothesis holds that both the same brain neural networks supporting the native language and additional new neural networks are utilized to implement second language processing. However, whether and how this hypothesis applies at the finer-grained levels of both brain anatomical organization and linguistic functions remains unknown. To address this issue, we scanned Chinese-English bilinguals during an implicit reading task involving Chinese words, English words and Chinese pinyin. We observed broad brain cortical regions wherein interdigitated distributed neural populations supported the same cognitive components of different languages. Although spatially separate, regions including the opercular and triangular parts of the inferior frontal gyrus, temporal pole, superior and middle temporal gyrus, precentral gyrus and supplementary motor areas were found to perform the same linguistic functions across languages, indicating regional-level functional assimilation supported by voxel-wise anatomical accommodation. Taken together, the findings not only verify the functional independence of neural representations of different languages, but show co-representation organization of both languages in most language regions, revealing linguistic-feature specific accommodation and assimilation between first and second languages.


Asunto(s)
Multilingüismo , Humanos , Mapeo Encefálico , Imagen por Resonancia Magnética , Lenguaje , Lingüística
17.
J Neurophysiol ; 129(2): 431-444, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598147

RESUMEN

To understand the operation of the olfactory system, it is essential to know how information is encoded in the olfactory bulb. We applied Shannon information theoretic methods to address this, with signals from up to 57 glomeruli simultaneously optically imaged from presynaptic inputs in glomeruli in the mouse dorsal (dOB) and lateral (lOB) olfactory bulb, in response to six exemplar pure chemical odors. We discovered that, first, the tuning of these signals from glomeruli to a set of odors is remarkably broad, with a mean sparseness of 0.83 and a mean signal correlation of 0.64. Second, both of these factors contribute to the low information that is available from the responses of even populations of many tens of glomeruli, which was only 1.35 bits across 33 glomeruli on average, compared with the 2.58 bits required to perfectly encode these six odors. Third, although there is considerable interest in the possibility of temporal encoding of stimulus including odor identity, the amount of information in the temporal aspects of the presynaptic glomerular responses was low (mean 0.11 bits) and, importantly, was redundant with respect to the information available from the rates. Fourth, the information from simultaneously recorded glomeruli asymptotes very gradually and nonlinearly, showing that glomeruli do not have independent responses. Fifth, the information from a population became available quite rapidly, within 100 ms of sniff onset, and the peak of the glomerular response was at 200 ms. Sixth, the information from the lOB was not additive with that of the dOB.NEW & NOTEWORTHY We report broad tuning and low odor information available across the lateral and dorsal bulb populations of glomeruli. Even though response latencies can be significantly predictive of stimulus identity, such contained very little information and none that was not redundant with information based on rate coding alone. Last, in line with the emerging notion of the important role of earliest stages of responses ("primacy"), we report a very rapid rise in information after each inhalation.


Asunto(s)
Odorantes , Bulbo Olfatorio , Ratones , Animales , Bulbo Olfatorio/fisiología , Olfato/fisiología , Vías Olfatorias/fisiología
18.
Soc Cogn Affect Neurosci ; 18(1)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-34189586

RESUMEN

The aim was to investigate with very large-scale analyses whether there are underlying functional connectivity differences between humans that relate to food reward and whether these in turn are associated with being overweight. In 37 286 humans from the UK Biobank, resting-state functional connectivities of the orbitofrontal cortex (OFC), especially with the anterior cingulate cortex, were positively correlated with the liking for sweet foods (False Discovery Rate (FDR) P < 0.05). They were also positively correlated with the body mass index (BMI) (FDR P < 0.05). Moreover, in a sample of 502 492 people, the 'liking for sweet foods' was correlated with their BMI (r = 0.06, P < 10-125). In a cross-validation with 545 participants from the Human Connectome Project, a higher functional connectivity involving the OFC relative to other brain areas was associated with a high BMI (≥30) compared to a mid-BMI group (22-25; P = 6 × 10-5), and low OFC functional connectivity was associated with a low BMI (≤20.5; P < 0.024). It is proposed that a high BMI relates to increased efficacy of OFC food reward systems and a low BMI to decreased efficacy. This was found with no stimulation by food, so may be an underlying individual difference in brain connectivity that is related to food reward and BMI.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Humanos , Corteza Prefrontal/fisiología , Peso Corporal , Recompensa
19.
Soc Cogn Affect Neurosci ; 18(1)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33830272

RESUMEN

In primates including humans, the orbitofrontal cortex is the key brain region representing the reward value and subjective pleasantness of the sight, smell, taste and texture of food. At stages of processing before this, in the insular taste cortex and inferior temporal visual cortex, the identity of the food is represented, but not its affective value. In rodents, the whole organisation of reward systems appears to be different, with reward value reflected earlier in processing systems. In primates and humans, the amygdala is overshadowed by the great development of the orbitofrontal cortex. Social and cognitive factors exert a top-down influence on the orbitofrontal cortex, to modulate the reward value of food that is represented in the orbitofrontal cortex. Recent evidence shows that even in the resting state, with no food present as a stimulus, the liking for food, and probably as a consequence of that body mass index, is correlated with the functional connectivity of the orbitofrontal cortex and ventromedial prefrontal cortex. This suggests that individual differences in these orbitofrontal cortex reward systems contribute to individual differences in food pleasantness and obesity. Implications of how these reward systems in the brain operate for understanding, preventing and treating obesity are described.


Asunto(s)
Corteza Prefrontal , Gusto , Animales , Humanos , Primates , Recompensa , Obesidad
20.
Cereb Cortex ; 33(7): 3319-3349, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35834308

RESUMEN

The effective connectivity between 55 visual cortical regions and 360 cortical regions was measured in 171 HCP participants using the HCP-MMP atlas, and complemented with functional connectivity and diffusion tractography. A Ventrolateral Visual "What" Stream for object and face recognition projects hierarchically to the inferior temporal visual cortex, which projects to the orbitofrontal cortex for reward value and emotion, and to the hippocampal memory system. A Ventromedial Visual "Where" Stream for scene representations connects to the parahippocampal gyrus and hippocampus. An Inferior STS (superior temporal sulcus) cortex Semantic Stream receives from the Ventrolateral Visual Stream, from visual inferior parietal PGi, and from the ventromedial-prefrontal reward system and connects to language systems. A Dorsal Visual Stream connects via V2 and V3A to MT+ Complex regions (including MT and MST), which connect to intraparietal regions (including LIP, VIP and MIP) involved in visual motion and actions in space. It performs coordinate transforms for idiothetic update of Ventromedial Stream scene representations. A Superior STS cortex Semantic Stream receives visual inputs from the Inferior STS Visual Stream, PGi, and STV, and auditory inputs from A5, is activated by face expression, motion and vocalization, and is important in social behaviour, and connects to language systems.


Asunto(s)
Corteza Visual , Vías Visuales , Humanos , Vías Visuales/diagnóstico por imagen , Lóbulo Temporal , Hipocampo , Corteza Prefrontal , Lóbulo Parietal , Mapeo Encefálico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...