Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771934

RESUMEN

A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.

2.
J Pharm Biomed Anal ; 245: 116143, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678859

RESUMEN

Centella asiatica (L.) Urb. is a small herbaceous plant belonging to the Apiaceae family that is rich in triterpenes, such as asiaticoside and madecassoside. Centella asiatica finds broad application in promoting wound healing, addressing skin disorders, and boosting both memory and cognitive function. Given its extensive therapeutic potential, this study aimed not only to investigate the Centella asiatica ethanolic extract but also to analyze the biological properties of its organic fractions, such as antioxidant antiglycation capacity, which are little explored. We also identified the main bioactive compounds through spectrometry analysis. The ethanolic extract (EE) was obtained through a static maceration for seven days, while organic fractions (HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; BF: n-butanol fraction and HMF: hydromethanolic fraction) were obtained via liquid-liquid fractionation. The concentration of phenolic compounds, flavonoids, and tannins in each sample was quantified. Additionally, the antiglycation (BSA/FRU, BSA/MGO, and ARG/MGO models) and antioxidant (FRAP, ORAC, and DPPH) properties, as well as the ability to inhibit LDL oxidation and hepatic tissue peroxidation were evaluated. The inhibition of enzyme activity was also analyzed (α-amylase, α-glycosidase, acetylcholinesterase, and butyrylcholinesterase). We also evaluated the antimicrobial and cytotoxicity against RAW 264.7 macrophages. The main compounds present in the most bioactive fractions were elucidated through ESI FT-ICR MS and HPLC-ESI-MS/MS analysis. In the assessment of antioxidant capacity (FRAP, ORAC, and DPPH), the EAF and BF fractions exhibited notable results, and as they are the phenolic compounds richest fractions, they also inhibited LDL oxidation, protected the hepatic tissue from peroxidation and inhibited α-amylase activity. Regarding glycation models, the EE, EAF, BF, and HMF fractions demonstrated substantial activity in the BSA/FRU model. However, BF was the only fraction that presented non-cytotoxic activity in RAW 264.7 macrophages at all tested concentrations. In conclusion, this study provides valuable insights into the antioxidant, antiglycation, and enzymatic inhibition capacities of the ethanolic extract and organic fractions of Centella asiatica. The findings suggest that further in vivo studies, particularly focusing on the butanol fraction (BF), may be promising routes for future research and potential therapeutic applications.


Asunto(s)
Antioxidantes , Centella , Lipoproteínas LDL , Oxidación-Reducción , Extractos Vegetales , Albúmina Sérica Bovina , Triterpenos , alfa-Amilasas , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Centella/química , Antioxidantes/farmacología , Antioxidantes/química , Ratones , Oxidación-Reducción/efectos de los fármacos , Glicosilación/efectos de los fármacos , Albúmina Sérica Bovina/metabolismo , Lipoproteínas LDL/metabolismo , Triterpenos/farmacología , Triterpenos/química , Células RAW 264.7
3.
J Forensic Sci ; 69(3): 1025-1034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520078

RESUMEN

The area of forensic chemistry has been growing and developing as a line of research due to the high demands of public safety that require increasingly reliable results due to their importance in criminalistics. In this way, the development of new technologies that help this area, whether in the identification and quantification of drugs or the fight against fraud, becomes promising. In this context, the present work explored the production of reference standards from the purification of cocaine/crack samples seized by the Civil Police of the State of Espírito Santo. Cocaine was purified using chromatographic techniques, and benzoylecgonine was synthesized from purified cocaine. All substances were characterized by ultra-high-resolution mass spectrometry and nuclear magnetic resonance. Homogeneity and stability studies were also performed with benzoylecgonine, and the results were evaluated using analysis of variance (ANOVA). Cocaine and benzoylecgonine showed purities of 98.37% and 96.34%, respectively. The homogeneity of the batch, short-term stability, and other parameters were also evaluated, which together indicate this proposal as promising in the development of reference standards for drugs of abuse from samples seized by the Brazilian forensic police.


Asunto(s)
Cocaína/análogos & derivados , Drogas Ilícitas , Espectrometría de Masas , Estándares de Referencia , Humanos , Drogas Ilícitas/química , Espectroscopía de Resonancia Magnética , Toxicología Forense , Brasil , Cromatografía de Gases y Espectrometría de Masas
4.
Planta Med ; 90(3): 243-251, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37973148

RESUMEN

To better use the Lecythis pisonis Cambess. biomass, this study investigates whether Sapucaia seed coats present wound healing properties. We analyzed the antibacterial, antioxidant, and wound healing-promoting potentials, plus cytotoxicity and stimulation of vascular endothelial growth factor-A. The chemical composition was analyzed by positive ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. A total of 19 compounds were identified, such as proanthocyanidin A1, procyanidins A1, B2, and C1, epigallocatechin, and kaempferol (p-coumaroyl) glycoside. Potent antioxidant strength/index was verified for 2,2-diphenyl-1-picrylhydrazyl radical (IC50 = 0.99 µg/mL) and ferric reducing antioxidant power (IC50 = 1.09 µg/mL). The extract did not present cytotoxicity and promoted significant cell migration and/or proliferation of fibroblasts (p < 0.05). Vascular endothelial growth factor-A was stimulated dose-dependently at 6 µg/mL (167.13 ± 8.30 pg/mL), 12.5 µg/mL (210.3 ± 14.2 pg/mL), and 25 µg/mL (411.6 ± 29.4 pg/mL). Platelet-derived growth factor (PDGF) (0.002 µg/mL) was stimulated at 215.98 pg/mL. Staphylococcus aureus was susceptible to the extract, with a minimum inhibitory concentration of 31.25 µg/mL. The identified compounds benefit the antioxidant activity, promoting hemostasis for the wound healing process, indicating that this extract has the potential for use in dermatological cosmetics.


Asunto(s)
Antioxidantes , Polifenoles , Antioxidantes/química , Polifenoles/farmacología , Polifenoles/análisis , Factor A de Crecimiento Endotelial Vascular/análisis , Semillas/química , Cicatrización de Heridas , Extractos Vegetales/química
5.
Talanta ; 269: 125482, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042146

RESUMEN

Attenuated Total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is an emerging technology in the medical field. Blood D-dimer was initially studied as a marker of the activation of coagulation and fibrinolysis. It is mainly used as a potential diagnosis screening test for pulmonary embolism or deep vein thrombosis but was recently associated with COVID-19 severity. This study aimed to evaluate the use of ATR-FTIR spectroscopy with machine learning to classify plasma D-dimer concentrations. The plasma ATR-FTIR spectra from 100 patients were studied through principal component analysis (PCA) and two supervised approaches: genetic algorithm with linear discriminant analysis (GA-LDA) and partial least squares with linear discriminant (PLS-DA). The spectra were truncated to the fingerprint region (1800-1000 cm-1). The GA-LDA method effectively classified patients according to D-dimer cutoff (≤0.5 µg/mL and >0.5 µg/mL) with 87.5 % specificity and 100 % sensitivity on the training set, and 85.7 % specificity, and 95.6 % sensitivity on the test set. Thus, we demonstrate that ATR-FTIR spectroscopy might be an important additional tool for classifying patients according to D-dimer values. ATR-FTIR spectral analyses associated with clinical evidence can contribute to a faster and more accurate medical diagnosis, reduce patient morbidity, and save resources and demand for professionals.


Asunto(s)
Espectroscopía Infrarroja por Transformada de Fourier , Humanos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Análisis de Fourier , Análisis Discriminante , Análisis de Componente Principal , Proteínas de la Ataxia Telangiectasia Mutada
6.
Anal Methods ; 15(33): 4119-4133, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37622198

RESUMEN

The Standard Practices for Infrared Multivariate Quantitative Analysis (ASTM E1655) provide a guide for determining physicochemical properties of materials using multivariate calibration techniques applied to chemical sources that have high multicollinearity and correlated information. Partial least squares (PLS) is the most widely used multivariate regression method due to its excellent prediction capabilities and easy optimization. Initially applied to chromatographic data, PLS has also shown great results in near-infrared (NIR) and mid-infrared (MIR) spectroscopies. However, complex chemical matrices with low correlation may not be efficiently modeled using PLS or other multivariate analyses limited by grouping similar information (such as latent variables or principal components). Therefore, this study aims to evaluate the multicollinearity of different analytical techniques, such as high-temperature gas chromatography (HTGC), NIR, MIR, hydrogen nuclear magnetic resonance (1H NMR), carbon-13 nuclear magnetic resonance (13C NMR), and Fourier transform ion cyclotron resonance mass spectrometry coupled to the electrospray source in positive and negative ionization modes (ESI(±)FT-ICR). Descriptive statistics (coefficient of determination, R2) and principal component analysis (PCA) were used to identify the distribution of correlated information. Results showed that NIR and MIR spectroscopies exhibited a higher percentage of correlated variables, while 13C NMR and ESI(±)FT-ICR MS had more discrete profiles. Therefore, PLS development may be more effectively applied to NIR, MIR, and 1H NMR data, while 13C NMR and mass spectra may require other algorithms or variable selection methods in combination with PLS.

7.
J Agric Food Chem ; 71(18): 6818-6829, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104821

RESUMEN

In agriculture, the control of fungal infections is essential to improve crop quality and productivity. This study describes the preparation and fungicidal activity evaluation of 12 glycerol derivatives bearing 1,2,3-triazole fragments. The derivatives were prepared from glycerol in four steps. The key step corresponded to the Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between the azide 4-(azidomethyl)-2,2-dimethyl-1,3-dioxolane (3) and different terminal alkynes (57-91% yield). The compounds were characterized by infrared spectroscopy, nuclear magnetic resonance (1H and 13C), and high-resolution mass spectrometry. The in vitro assessment of the compounds on Asperisporium caricae, that is, the etiological agent of papaya black spot, at 750 mg L-1 showed that the glycerol derivatives significantly inhibited conidial germination with different degrees of efficacy. The most active compound 4-(3-chlorophenyl)-1-((2,2-dimethyl-1,3-dioxolan-4-yl) methyl)-1H-1,2,3-triazole (4c) presented a 91.92% inhibition. In vivo assays revealed that 4c reduced the final severity (70.7%) and area under the disease severity progress curve of black spots on papaya fruits 10 days after inoculation. The glycerol-bearing 1,2,3-triazole derivatives also present agrochemical-likeness properties. Our in silico study using molecular docking calculations show that all triazole derivatives bind favorably to the sterol 14α-demethylase (CYP51) active site at the same region of the substrate lanosterol (LAN) and fungicide propiconazole (PRO). Thus, the mechanism of action of the compounds 4a-4l may be the same as the fungicide PRO, blocking the entrance/approximation of the LAN into the CYP51 active site by steric effects. The reported results point to the fact that the glycerol derivatives may represent a scaffold to be explored for the development of new chemical agents to control papaya black spot.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Alcoholes de Triosa , Glicerol , Simulación del Acoplamiento Molecular , Azidas/química , Triazoles/química
8.
An Acad Bras Cienc ; 95(1): e20211102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36946806

RESUMEN

The control of weeds in agriculture is mainly conducted with the use of synthetic herbicides. However, environmental and human health concerns and increased resistance of weeds to existing herbicides have increased the pressure on researchers to find new active ingredients for weed control which present low toxicity to non-target organisms, are environmentally safe, and can be applied at low concentrations. It is herein described the synthesis of glycerol-fluorinated triazole derivatives and evaluation of their phytotoxic and cytogenotoxic activities. Starting from glycerol, ten fluorinated triazole derivatives were prepared in four steps. The assessment of them on Lactuca sativa revealed that they present effects on phytotoxic and cytogenotoxic parameters with different degrees of efficiency. The compounds 4a, 4b, 4d, 4e, 4i, and 4j have pre-emergent inhibition behavior, while all the investigated compounds showed post emergent effect. Mechanism of action as clastogenic, aneugenic, and epigenetic were observed in the lettuce root meristematic cells, with alterations as stick chromosome, bridge, delay, c-metaphase, and loss. It is believed that glycerol-fluorinated triazole derivatives possess a scaffold that can be explored towards the development of new chemicals for the control of weed species.


Asunto(s)
Alcaloides , Herbicidas , Humanos , Glicerol/toxicidad , Alcoholes de Triosa , Triazoles/toxicidad , Meristema , Alcaloides/farmacología , Herbicidas/toxicidad , Herbicidas/química , Malezas , Lactuca
9.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771057

RESUMEN

(1) Background: Malignant gliomas are aggressive tumors characterized by fast cellular growth and highly invasive properties. Despite all biological and clinical advances in therapy, the standard treatment remains essentially palliative. Therefore, searching for alternative therapies that minimize adverse symptoms and improve glioblastoma patients' outcomes is imperative. Natural products represent an essential source in the discovery of such new drugs. Plants from the cerrado biome have been receiving increased attention due to the presence of secondary metabolites with significant therapeutic potential. (2) Aim: This study provides data on the cytotoxic potential of 13 leaf extracts obtained from plants of 5 families (Anacardiaceae, Annonaceae, Fabaceae, Melastomataceae e Siparunaceae) found in the Brazilian cerrado biome on a panel of 5 glioma cell lines and one normal astrocyte. (3) Methods: The effect of crude extracts on cell viability was evaluated by MTS assay. Mass spectrometry (ESI FT-ICR MS) was performed to identify the secondary metabolites classes presented in the crude extracts and partitions. (4) Results: Our results revealed the cytotoxic potential of Melastomataceae species Miconia cuspidata, Miconia albicans, and Miconia chamissois. Additionally, comparing the four partitions obtained from M. chamissois crude extract indicates that the chloroform partition had the greatest cytotoxic activity against the glioma cell lines. The partitions also showed a mean IC50 close to chemotherapy, temozolomide; nevertheless, lower toxicity against normal astrocytes. Analysis of secondary metabolites classes presented in these crude extracts and partitions indicates the presence of phenolic compounds. (5) Conclusions: These findings highlight M. chamissois chloroform partition as a promising component and may guide the search for the development of additional new anticancer therapies.


Asunto(s)
Antineoplásicos , Glioma , Melastomataceae , Humanos , Brasil , Cloroformo , Línea Celular , Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Melastomataceae/química , Glioma/tratamiento farmacológico , Ecosistema
10.
Food Chem ; 409: 135317, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36586269

RESUMEN

The advancement in the use of spectroscopic techniques to investigate coffee samples is of high interest especially considering the widespread problems with coffee adulteration and counterfeiting. In this work, the use of solid-state nuclear magnetic resonance (NMR) is investigated as a means to probe the various chemically-distinct phases existent in roasted coffee samples and to detect the occurrence of counterfeiting or adulterations in coffee blends. Routine solid-state 1H and 13C NMR spectra allowed the distinction between different coffee types (Arabica/Robusta) and the evaluation of the presence of these components in coffee blends. On the other hand, the use of more specialized solid-state NMR experiments revealed the existence of phases with different molecular mobilities (e.g., associated with lipids or carbohydrates). The results illustrate the usefulness of solid-state NMR spectroscopy to examine molecular mobilities and interactions and to aid in the quality control of coffee-related products.


Asunto(s)
Coffea , Café , Café/química , Coffea/química , Semillas/química , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética
11.
An Acad Bras Cienc ; 94(suppl 3): e20211433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36197364

RESUMEN

Biosurfactants and waterflooding have been widely reported thus far for enhancing oil production. Nevertheless, there is a lack of literature to explore enhanced oil recovered methods effects on its chemical composition. The aim of this work is to investigate the effects of a biosurfactant produced by Bacillus safensis and brine injection on the recovered petroleum composition, and their implications for geochemical interpretation. Original and oils recovered from displacement tests were analyzed by gas chromatography and ultra-high-resolution mass spectrometry, emphasizing saturated and aromatic biomarkers and basic and acidic polar compounds. Geochemical parameters based on some saturated compounds were subtly affected by the recovery methods, showing their reliable applicability in geochemical studies. Contrarily, parameters based on some aromatic compounds were more affected by biosurfactant flooding, mostly the low molecular weight compounds. Thus, these aromatic parameters should be applied with caution after such methods. The distribution of basic and acidic polar compounds can also be modified affecting the geochemical interpretation. In the case of the basic ones, the biosurfactant greatly influenced the N class species with favorable loss of lower aromaticity compounds. In addition to water solubilization, the compositional changes described in this study can be related to fractionation due to adsorption on reservoir rocks.


Asunto(s)
Petróleo , Tensoactivos , Cromatografía de Gases y Espectrometría de Masas , Aceites , Tensoactivos/análisis , Tensoactivos/química , Agua
12.
J Proteome Res ; 21(8): 1868-1875, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35880262

RESUMEN

Rapid identification of existing respiratory viruses in biological samples is of utmost importance in strategies to combat pandemics. Inputting MALDI FT-ICR MS (matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry) data output into machine learning algorithms could hold promise in classifying positive samples for SARS-CoV-2. This study aimed to develop a fast and effective methodology to perform saliva-based screening of patients with suspected COVID-19, using the MALDI FT-ICR MS technique with a support vector machine (SVM). In the method optimization, the best sample preparation was obtained with the digestion of saliva in 10 µL of trypsin for 2 h and the MALDI analysis, which presented a satisfactory resolution for the analysis with 1 M. SVM models were created with data from the analysis of 97 samples that were designated as SARS-CoV-2 positives versus 52 negatives, confirmed by RT-PCR tests. SVM1 and SVM2 models showed the best results. The calibration group obtained 100% accuracy, and the test group 95.6% (SVM1) and 86.7% (SVM2). SVM1 selected 780 variables and has a false negative rate (FNR) of 0%, while SVM2 selected only two variables with a FNR of 3%. The proposed methodology suggests a promising tool to aid screening for COVID-19.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , Prueba de COVID-19 , Análisis de Fourier , Humanos , Aprendizaje Automático , SARS-CoV-2 , Saliva , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
13.
Molecules ; 27(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35566325

RESUMEN

Candida species are the main fungal agents causing infectious conditions in hospital patients. The development of new drugs with antifungal potential, increased efficacy, and reduced toxicity is essential to face the challenge of fungal resistance to standard treatments. The aim of this study is to evaluate the in vitro antifungal effects of two crude extracts of Crinum americanum L., a rich alkaloid fraction and lycorine alkaloid, on the Candida species. As such, we used a disk diffusion susceptibility test, determined the minimum inhibitory concentration (MIC), and characterized the components of the extracts using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI FT-ICR MS). The extracts were found to have antifungal activity against various Candida species. The chemical characterization of the extracts indicated the presence of alkaloids such as lycorine and crinine. The Amaryllidaceae family has a promising antifungal potential. Furthermore, it was found that the alkaloid lycorine directly contributes to the effects that were observed for the extracts and fraction of C. americanum.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Crinum , Alcaloides/química , Alcaloides/farmacología , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Candida , Crinum/química , Humanos , Fenantridinas , Extractos Vegetales/química , Extractos Vegetales/farmacología
14.
J Forensic Sci ; 67(4): 1399-1416, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35430736

RESUMEN

The use of drugs of abuse has grown significantly in recent decades. In forensic chemistry, methods of identifying and characterizing illicit drugs contribute to the interests of researchers, experts, and public security authorities. Among existing methods, portable Raman spectroscopy is notable for performing rapid, non-destructive, and highly selective analysis in the laboratory or on-site. When the resulting spectral data are paired with chemometric tools, methods of exploratory analysis and multivariate calibration can be developed. Thus, this work describes the application of Raman spectroscopy associated with principal component analysis (PCA) and interval principal component analysis (iPCA) to assessing trends in samples of cocaine (n = 40), crack (n = 33), and their main adulterants (n = 5) and diluents (n = 5), tablets of ecstasy (n = 14), designer drugs papers (n = 27), and alcoholic solutions adulterated with benzodiazepines (alprazolam and diazepam). In addition, competitive adaptive reweighted sampling (CARS) combined with partial least squares (PLS) regression (CARSPLS) was used to quantify adulterants (benzocaine, lidocaine, and procaine) in binary mixtures with crack (n = 21) and solutions of cachaça adulterated with bromazepam (n = 11).


Asunto(s)
Drogas Ilícitas , Espectrometría Raman , Drogas Ilícitas/análisis , Análisis de los Mínimos Cuadrados , Análisis de Componente Principal , Espectrometría Raman/métodos , Comprimidos
15.
J Am Soc Mass Spectrom ; 33(3): 573-583, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35157449

RESUMEN

When investigating the potential use of plants as a raw material for an all-natural cosmetic formulation, the main parameters are the chemical composition, antioxidant potential, antimicrobial action, and toxicity. Additionally, the production of natural cosmetics should also consider the availability of primary materials and the environmental and socioeconomic impact. Gliricidia sepium is a species that produces a large amount of plant material, being cultivated in the agroforestry system. However, studies of phytochemical composition and chemical spatial distribution are scarcely using the MALDI MS (matrix-assisted laser desorption ionization mass spectrometry) and MALDI MSI (mass spectrometry imaging) techniques. A methodology was developed to optimize ionization parameters and analysis conditions by evaluating the efficiency of three matrices: α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid (DHB), and 2-mercaptobenzothiazole in MALDI MS analysis. All results were compared to ESI MS (electrospray ionization mass spectrometry), and afterward, MALDI MSI analysis was performed on the leaf surface. This study showed through phytochemical analysis that G. sepium leaves are composed of polyphenols and tannins, concluding that the methanolic extract had a higher amount of flavonoid content. Four compounds were identified on the leaf surface, and their spatial distribution was analyzed by MALDI MS using DHB as a matrix. Kaempferol, isorhamnetin, and some fatty acids showed potential applicability for cosmetical use. All the extracts presented antioxidant activity or antimicrobial action and no cytotoxicity. Therefore, extracts of G. sepium could be used as raw materials in cosmetics.


Asunto(s)
Fabaceae/química , Imagen Molecular/métodos , Fitoquímicos , Hojas de la Planta/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cosméticos , Ratones , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/toxicidad , Polifenoles/análisis , Polifenoles/química , Polifenoles/toxicidad
16.
Anal Chem ; 94(5): 2425-2433, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35076208

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the worst global health crisis in living memory. The reverse transcription polymerase chain reaction (RT-qPCR) is considered the gold standard diagnostic method, but it exhibits limitations in the face of enormous demands. We evaluated a mid-infrared (MIR) data set of 237 saliva samples obtained from symptomatic patients (138 COVID-19 infections diagnosed via RT-qPCR). MIR spectra were evaluated via unsupervised random forest (URF) and classification models. Linear discriminant analysis (LDA) was applied following the genetic algorithm (GA-LDA), successive projection algorithm (SPA-LDA), partial least squares (PLS-DA), and a combination of dimension reduction and variable selection methods by particle swarm optimization (PSO-PLS-DA). Additionally, a consensus class was used. URF models can identify structures even in highly complex data. Individual models performed well, but the consensus class improved the validation performance to 85% accuracy, 93% sensitivity, 83% specificity, and a Matthew's correlation coefficient value of 0.69, with information at different spectral regions. Therefore, through this unsupervised and supervised framework methodology, it is possible to better highlight the spectral regions associated with positive samples, including lipid (∼1700 cm-1), protein (∼1400 cm-1), and nucleic acid (∼1200-950 cm-1) regions. This methodology presents an important tool for a fast, noninvasive diagnostic technique, reducing costs and allowing for risk reduction strategies.


Asunto(s)
COVID-19 , Saliva , Análisis Discriminante , Humanos , Análisis de los Mínimos Cuadrados , Análisis Multivariante , SARS-CoV-2 , Espectroscopía Infrarroja por Transformada de Fourier
17.
Curr Org Synth ; 18(8): 844-853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34886771

RESUMEN

BACKGROUND: Privileged scaffolds are of high importance for molecules containing the pyrazole subunit due to their broad spectrum of pharmacological activities. For this reason, a method that is more efficient needs to be developed for the preparation of pyrazole derivatives. OBJECTIVE: The purpose of this study was the optimisation of the conventional synthesis of the pyrazole ring and the oxidation of phenyl-1H-pyrazole-4-carbaldehyde to phenyl-1H-pyrazole-4-carboxylic acid through Microwave- Assisted Organic Synthesis (MAOS). METHODS: We performed a comparison between conventional synthesis and conventional synthesis with microwave heating using the synthesis method of pyrazole ring described by Finar and Godfrey and for the oxidation of phenyl-1H-pyrazole-4-carbaldehyde, the method described by Shriner and Kleiderer was used. RESULTS: MAOS reduces the reaction time to obtain all compounds compared to conventional heating. At a temperature of 60°C, 5 minutes of reaction time, and power of 50 W, the yield of phenyl-1H-pyrazoles (3a-m) compounds was in the range of 91 - 98% using MAOS, which is better than conventional heating (72 - 90%, 75ºC, 2 hours). An improvement in the yield for the oxidation reaction was also achieved with MAOS. The compounds (5a-m) were obtained with yields ranging from 62 - 92% (80ºC, 2 minutes, 150 W), while the yields with conventional heating were in the range of 48 - 85% (80ºC, 1 hour). The 26 compounds were achieved through an easy work-up procedure with no chromatographic separation. The pure products were characterised by the spectral data obtained from IR, MS, 1H and 13C NMR or HSQC/HMBC techniques. CONCLUSION: The advantages of MAOS include short reaction time and increased yield, due to which it is an attractive option for pyrazole compounds synthesis.


Asunto(s)
Microondas , Pirazoles , Ácidos Carboxílicos , Técnicas de Química Sintética
18.
Anal Bioanal Chem ; 413(24): 6013-6036, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34430982

RESUMEN

Molecularly imprinted polymers (MIP) consist of a molecular recognition technology with applicability in different areas, including forensic chemistry. Among the forensic applications, the use of MIP in biological fluid analysis has gained prominence. Biological fluids are complex samples that generally require a pre-treatment to eliminate interfering agents to improve the results of the analyses. In this review, we address the development of this molecular imprinting technology over the years, highlighting the forensic applications of molecularly imprinted polymers in biological sample preparation for analysis of stimulant drugs such as cocaine, amphetamines, and nicotine.


Asunto(s)
Medicina Legal , Polímeros Impresos Molecularmente , Adsorción , Humanos
19.
Curr Top Med Chem ; 21(22): 1999-2017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225623

RESUMEN

BACKGROUND: Natural products have been universally approached in the research of novel trends useful to detail the essential paths of the life sciences and as a strategy for pharmacotherapeutics. OBJECTIVE: This work focuses on further modification to the 6-hydroxy-flavanone building block aiming to obtain improved BCR-ABL kinase inhibitors. METHODS: Ether derivatives were obtained from Williamson synthesis and triazole from Microwave- assisted click reaction. Chemical structures were finely characterized through IR, 1H and 13C NMR and HRMS. They were tested for their inhibitory activity against BCR-ABL kinase. RESULTS: Two inhibitors bearing a triazole ring as a pharmacophoric bridge demonstrated the strongest kinase inhibition at IC50 value of 364 nM (compound 3j) and 275 nM (compound 3k). CONCLUSION: 6-hydroxy-flavanone skeleton can be considered as a promising core for BCR-ABL kinase inhibitors.


Asunto(s)
Flavonoides/síntesis química , Flavonoides/farmacología , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología
20.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806119

RESUMEN

Cervical cancer is the third most common in Brazilian women. The chemotherapy used for the treatment of this disease can cause many side effects; then, to overcome this problem, new treatment options are necessary. Natural compounds represent one of the most promising sources for the development of new drugs. In this study, 13 different species of 6 families from the Brazilian Cerrado vegetation biome were screened against human cervical cancer cell lines (CCC). Some of these species were also evaluated in one normal keratinocyte cell line (HaCaT). The effect of crude extracts on cell viability was evaluated by a colorimetric method (MTS assay). Extracts from Annona crassiflora, Miconia albicans, Miconia chamissois, Stryphnodendron adstringens, Tapirira guianensis, Xylopia aromatica, and Achyrocline alata showed half-maximal inhibitory concentration (IC50) values < 30 µg/mL for at least one CCC. A. crassiflora and S. adstringens extracts were selective for CCC. Mass spectrometry (Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ESI FT-ICR MS)) of A. crassiflora identified fatty acids and flavonols as secondary compounds. One of the A. crassiflora fractions, 7C24 (from chloroform partition), increased H2AX phosphorylation (suggesting DNA damage), PARP cleavage, and cell cycle arrest in CCC. Kaempferol-3-O-rhamnoside and oleic acid were bioactive molecules identified in 7C24 fraction. These findings emphasize the importance of investigating bioactive molecules from natural sources for developing new anti-cancer drugs.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Bioprospección/métodos , Colorimetría/métodos , Neoplasias del Cuello Uterino/metabolismo , Annona/metabolismo , Brasil/epidemiología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Ecosistema , Ácidos Grasos/química , Femenino , Flavonoles/química , Células HaCaT , Células HeLa , Humanos , Concentración 50 Inhibidora , Espectrometría de Masas , Extractos Vegetales/farmacología , Espectrometría de Masa por Ionización de Electrospray , Neoplasias del Cuello Uterino/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...