Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 217(10): 3431-3445, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30087124

RESUMEN

The meiotic spindle in oocytes is assembled in the absence of centrosomes, the major microtubule nucleation sites in mitotic and male meiotic cells. A crucial, yet unresolved question in meiosis is how spindle microtubules are generated without centrosomes and only around chromosomes in the exceptionally large volume of oocytes. Here we report a novel oocyte-specific microtubule nucleation pathway that is essential for assembling most spindle microtubules complementarily with the Augmin pathway. This pathway is mediated by the kinesin-6 Subito/MKlp2, which recruits the γ-tubulin complex to the spindle equator to nucleate microtubules in Drosophila oocytes. Away from chromosomes, Subito interaction with the γ-tubulin complex is suppressed by its N-terminal region to prevent ectopic microtubule assembly in oocytes. We further demonstrate in vitro that the Subito complex from ovaries can nucleate microtubules from pure tubulin dimers. Collectively, microtubule nucleation regulated by Subito drives spatially restricted spindle assembly in oocytes.


Asunto(s)
Meiosis , Microtúbulos/metabolismo , Oocitos/metabolismo , Multimerización de Proteína , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Microtúbulos/genética , Huso Acromático/genética , Tubulina (Proteína)/genética
2.
Methods Cell Biol ; 145: 237-248, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29957206

RESUMEN

Studies using Drosophila have played pivotal roles in advancing our understanding of molecular mechanisms of mitosis throughout the past decades, due to the short generation time and advanced genetic research of this organism. Drosophila is also an excellent model to study female meiosis in oocytes. Pathways such as the acentrosomal assembly of the meiotic spindle in oocytes are conserved from fly to humans. Collecting and manipulating large Drosophila oocytes for microscopy and biochemistry are both time and cost efficient, offering advantages over mouse or human oocytes. Therefore, Drosophila oocytes serve as an excellent platform for molecular studies of female meiosis using a combination of genetics, microscopy, and biochemistry. Here we describe key methods to observe the formation of the meiotic spindle either in fixed or in live oocytes. Moreover, biochemical methods are described to identify protein-protein interactions in vivo.


Asunto(s)
Drosophila/fisiología , Meiosis/fisiología , Microscopía/métodos , Oocitos/fisiología , Huso Acromático/fisiología , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Cinesinas/metabolismo , Mitosis/fisiología , Oocitos/metabolismo
3.
J Cell Biol ; 216(10): 3029-3039, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28860275

RESUMEN

The meiotic spindle is formed without centrosomes in a large volume of oocytes. Local activation of crucial spindle proteins around chromosomes is important for formation and maintenance of a bipolar spindle in oocytes. We found that phosphodocking 14-3-3 proteins stabilize spindle bipolarity in Drosophila melanogaster oocytes. A critical 14-3-3 target is the minus end-directed motor Ncd (human HSET; kinesin-14), which has well-documented roles in stabilizing a bipolar spindle in oocytes. Phospho docking by 14-3-3 inhibits the microtubule binding activity of the nonmotor Ncd tail. Further phosphorylation by Aurora B kinase can release Ncd from this inhibitory effect of 14-3-3. As Aurora B localizes to chromosomes and spindles, 14-3-3 facilitates specific association of Ncd with spindle microtubules by preventing Ncd from binding to nonspindle microtubules in oocytes. Therefore, 14-3-3 translates a spatial cue provided by Aurora B to target Ncd selectively to the spindle within the large volume of oocytes.


Asunto(s)
Proteínas 14-3-3/metabolismo , Cromosomas de Insectos/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Oocitos/metabolismo , Huso Acromático/metabolismo , Proteínas 14-3-3/genética , Animales , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Cromosomas de Insectos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Cinesinas/genética , Microtúbulos/genética , Oocitos/citología , Transporte de Proteínas/fisiología , Huso Acromático/genética
4.
Nat Commun ; 6: 8879, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26568519

RESUMEN

Tissue homeostasis requires accurate control of cell proliferation, differentiation and chromosome segregation. Drosophila sas-4 and aurA mutants present brain tumours with extra neuroblasts (NBs), defective mitotic spindle assembly and delayed mitosis due to activation of the spindle assembly checkpoint (SAC). Here we inactivate the SAC in aurA and sas-4 mutants to determine whether the generation of aneuploidy compromises NB proliferation. Inactivation of the SAC in the sas-4 mutant impairs NB proliferation and disrupts euploidy. By contrast, disrupting the SAC in the aurA mutant does not prevent NB amplification, tumour formation or chromosome segregation. The monitoring of Mad2 and cyclin B dynamics in live aurA NBs reveals that SAC satisfaction is not coupled to cyclin B degradation. Thus, the NBs of aurA mutants present delayed mitosis, with accurate chromosome segregation occurring in a SAC-independent manner. We report here the existence of an Aurora A-dependent mechanism promoting efficient, timed cyclin B degradation.


Asunto(s)
Aurora Quinasa A/genética , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Ciclina B/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2/metabolismo , Neuroblastoma/genética , Animales , Western Blotting , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Segregación Cromosómica , Drosophila , Técnica del Anticuerpo Fluorescente , Proteínas Asociadas a Microtúbulos , Mitosis , Mutación , Células-Madre Neurales , Neuroblastoma/metabolismo , Neuronas
5.
PLoS One ; 6(1): e14600, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21297952

RESUMEN

BACKGROUND: CDK11(p58) is a mitotic protein kinase, which has been shown to be required for different mitotic events such as centrosome maturation, chromatid cohesion and cytokinesis. METHODOLOGY/PRINCIPAL FINDINGS: In addition to these previously described roles, our study shows that CDK11(p58) inhibition induces a failure in the centriole duplication process in different human cell lines. We propose that this effect is mediated by the defective centrosomal recruitment of proteins at the onset of mitosis. Indeed, Plk4 protein kinase and the centrosomal protein Cep192, which are key components of the centriole duplication machinery, showed reduced levels at centrosomes of mitotic CDK11-depleted cells. CDK11(p58), which accumulates only in the vicinity of mitotic centrosomes, directly interacts with the centriole-associated protein kinase Plk4 that regulates centriole number in cells. In addition, we show that centriole from CDK11 defective cells are not able to be over duplicated following Plk4 overexpression. CONCLUSION/SIGNIFICANCE: We thus propose that CDK11 is required for centriole duplication by two non-mutually-exclusive mechanisms. On one hand, the observed duplication defect could be caused indirectly by a failure of the centrosome to fully maturate during mitosis. On the other hand, CDK11(p58) could also directly regulate key centriole components such as Plk4 during mitosis to trigger essential mitotic centriole modifications, required for centriole duplication during subsequent interphase.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Ciclina D3/fisiología , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Ciclina D3/metabolismo , Expresión Génica , Células HeLa , Humanos , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas
6.
J Cell Biol ; 189(4): 651-9, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20479466

RESUMEN

Aurora A is a spindle pole-associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150(glued) on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envelope breaks down, suggesting that its spindle localization is tightly regulated. If aurora A's function is compromised, dynactin and dynein become enriched on mitotic spindle microtubules. Phosphorylation sites are localized within the conserved microtubule-binding domain (MBD) of the p150(glued). Although wild-type p150(glued) binds weakly to spindle microtubules, a variant that can no longer be phosphorylated by aurora A remains associated with spindle microtubules and fails to rescue depletion of endogenous p150(glued). Our results suggest that aurora A kinase participates in vivo to the phosphoregulation of the p150(glued) MBD to limit the microtubule binding of the dynein-dynactin complex and thus regulates spindle assembly.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa A , Aurora Quinasas , Sitios de Unión , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Complejo Dinactina , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/metabolismo , Huso Acromático/metabolismo
7.
Med Sci (Paris) ; 26(4): 377-83, 2010 Apr.
Artículo en Francés | MEDLINE | ID: mdl-20412742

RESUMEN

Centrosomes are essential protagonists during cell division through microtubule nucleation and spindle formation which are key to the harmonious distribution of sister chromatids in the two daughter cells. However, during the past decade, a wealth of new observations has extended their role beyond mitosis, particularly in the asymmetrical partition of cell fate determinants. Remarkably, asymmetric centrosome inheritance per se, through the segregation of differently aged mother -centrioles, seems to regulate the differential behaviour of daughter cells, in part through asynchronous expression of primary cilia, governing the response to environmental signals. It is thus understandable why any quantitative or qualitative dysfunction of centrioles contributes to genomic -instability and thus -tumorigenesis.


Asunto(s)
Ciclo Celular/fisiología , Transformación Celular Neoplásica/genética , Centrosoma/fisiología , Huso Acromático/fisiología , Aneuploidia , Animales , División Celular/fisiología , Centriolos/fisiología , Cilios/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Humanos , Modelos Biológicos , Células Madre Neoplásicas/citología , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...