Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(39): 14539-14547, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37729112

RESUMEN

Increased interest in greenhouse gas (GHG) emissions, including recent legislative action and voluntary programs, has increased attention on quantifying and ultimately reducing methane emissions from the natural gas supply chain. While inventories used for public or corporate GHG policies have traditionally utilized bottom-up (BU) methods to estimate emissions, the validity of such inventories has been questioned. Therefore, there is attention on utilizing full-facility measurements using airborne, satellite, or drone (top-down (TD)) techniques to inform, improve, or validate inventories. This study utilized full-facility estimates from two independent TD methods at 15 midstream natural gas facilities in the U.S.A., which were compared with a contemporaneous daily inventory assembled by the facility operator, employing comprehensive inventory methods. Estimates from the two TD methods statistically agreed in 2 of 28 paired measurements. Operator inventories, which included extensions to capture sources beyond regular inventory requirements and integration of local measurements, estimated significantly lower emissions than the TD estimates for 40 of 43 paired comparisons. Significant disagreement was observed at most facilities, both between the two TD methods and between the TD estimates and operator inventory. These findings have two implications. First, improving inventory estimates will require additional on-site or ground-based diagnostic screening and measurement of all sources. Second, the TD full-facility measurement methods need to undergo further testing, characterization, and potential improvement specifically tailored for complex midstream facilities.

2.
Environ Sci Technol ; 57(32): 11823-11833, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506319

RESUMEN

Government policies and corporate strategies aimed at reducing methane emissions from the oil and gas sector increasingly rely on measurement-informed, site-level emission inventories, as conventional bottom-up inventories poorly capture temporal variability and the heavy-tailed nature of methane emissions. This work is based on an 11-month methane measurement campaign at oil and gas production sites. We find that operator-level top-down methane measurements are lower during the end-of-project phase than during the baseline phase. However, gaps persist between end-of-project top-down measurements and bottom-up site-level inventories, which we reconcile with high-frequency data from continuous monitoring systems (CMS). Specifically, we use CMS to (i) validate specific snapshot measurements and determine how they relate to the temporal emission profile of a given site and (ii) create a measurement-informed, site-level inventory that can be validated with top-down measurements to update conventional bottom-up inventories. This work presents a real-world demonstration of how to reconcile CMS rate estimates and top-down snapshot measurements jointly with bottom-up inventories at the site level. More broadly, it demonstrates the importance of multiscale measurements when creating measurement-informed, site-level emission inventories, which is a critical aspect of recent regulatory requirements in the Inflation Reduction Act, voluntary methane initiatives such as the Oil and Gas Methane Partnership 2.0, and corporate strategies.


Asunto(s)
Contaminantes Atmosféricos , Metano , Metano/análisis , Gas Natural/análisis , Contaminantes Atmosféricos/análisis
3.
Environ Sci Technol ; 52(1): 327-336, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29172473

RESUMEN

Polyacrylamide (PAM) based friction reducers are a primary ingredient of slickwater hydraulic fracturing fluids. Little is known regarding the fate of these polymers under downhole conditions, which could have important environmental impacts including decisions on strategies for reuse or treatment of flowback water. The objective of this study was to evaluate the chemical degradation of high molecular weight PAM, including the effects of shale, oxygen, temperature, pressure, and salinity. Data were obtained with a slickwater fracturing fluid exposed to both a shale sample collected from a Marcellus outcrop and to Marcellus core samples at high pressures/temperatures (HPT) simulating downhole conditions. Based on size exclusion chromatography analyses, the peak molecular weight of the PAM was reduced by 2 orders of magnitude, from roughly 10 MDa to 200 kDa under typical HPT fracturing conditions. The rate of degradation was independent of pressure and salinity but increased significantly at high temperatures and in the presence of oxygen dissolved in fracturing fluids. Results were consistent with a free radical chain scission mechanism, supported by measurements of sub-µM hydroxyl radical concentrations. The shale sample adsorbed some PAM (∼30%), but importantly it catalyzed the chemical degradation of PAM, likely due to dissolution of Fe2+ at low pH. These results provide the first evidence of radical-induced degradation of PAM under HPT hydraulic fracturing conditions without additional oxidative breaker.


Asunto(s)
Fracking Hidráulico , Contaminantes Químicos del Agua , Resinas Acrílicas , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...