Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 768076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185874

RESUMEN

The gastrointestinal tract represents one of the largest body surfaces that is exposed to the outside world. It is the only mucosal surface that is required to simultaneously recognize and defend against pathogens, while allowing nutrients containing foreign antigens to be tolerated and absorbed. It differentiates between these foreign substances through a complex system of pattern recognition receptors expressed on the surface of the intestinal epithelial cells as well as the underlying immune cells. These immune cells actively sample and evaluate microbes and other particles that pass through the lumen of the gut. This local sensing system is part of a broader distributed signaling system that is connected to the rest of the body through the enteric nervous system, the immune system, and the metabolic system. While local tissue homeostasis is maintained by commensal bacteria that colonize the gut, colonization itself may not be required for the activation of distributed signaling networks that can result in modulation of peripheral inflammation. Herein, we describe the ability of a gut-restricted strain of commensal bacteria to drive systemic anti-inflammatory effects in a manner that does not rely upon its ability to colonize the gastrointestinal tract or alter the mucosal microbiome. Orally administered EDP1867, a gamma-irradiated strain of Veillonella parvula, rapidly transits through the murine gut without colonization or alteration of the background microbiome flora. In murine models of inflammatory disease including delayed-type hypersensitivity (DTH), atopic dermatitis, psoriasis, and experimental autoimmune encephalomyelitis (EAE), treatment with EDP1867 resulted in significant reduction in inflammation and immunopathology. Ex vivo cytokine analyses revealed that EDP1867 treatment diminished production of pro-inflammatory cytokines involved in inflammatory cascades. Furthermore, blockade of lymphocyte migration to the gut-associated lymphoid tissues impaired the ability of EDP1867 to resolve peripheral inflammation, supporting the hypothesis that circulating immune cells are responsible for promulgating the signals from the gut to peripheral tissues. Finally, we show that adoptively transferred T cells from EDP1867-treated mice inhibit inflammation induced in recipient mice. These results demonstrate that an orally-delivered, non-viable strain of commensal bacteria can mediate potent anti-inflammatory effects in peripheral tissues through transient occupancy of the gastrointestinal tract, and support the development of non-living bacterial strains for therapeutic applications.


Asunto(s)
Antibacterianos/farmacología , Bacterias/inmunología , Citocinas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/inmunología , Animales , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Inmunidad Mucosa , Inflamación/etiología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Simbiosis , Linfocitos T/metabolismo
2.
J Cell Biol ; 218(6): 2021-2034, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30971414

RESUMEN

Peroxisomes import their luminal proteins from the cytosol. Most substrates contain a C-terminal Ser-Lys-Leu (SKL) sequence that is recognized by the receptor Pex5. Pex5 binds to peroxisomes via a docking complex containing Pex14, and recycles back into the cytosol following its mono-ubiquitination at a conserved Cys residue. The mechanism of peroxisome protein import remains incompletely understood. Here, we developed an in vitro import system based on Xenopus egg extracts. Import is dependent on the SKL motif in the substrate and on the presence of Pex5 and Pex14, and is sustained by ATP hydrolysis. A protein lacking an SKL sequence can be coimported, providing strong evidence for import of a folded protein. The conserved cysteine in Pex5 is not essential for import or to clear import sites for subsequent rounds of translocation. This new in vitro assay will be useful for further dissecting the mechanism of peroxisome protein import.


Asunto(s)
Extractos Celulares/análisis , Oocitos/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Citosol/metabolismo , Femenino , Oocitos/citología , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Transporte de Proteínas , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
3.
Cold Spring Harb Protoc ; 2019(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29475993

RESUMEN

The endoplasmic reticulum (ER) consists of morphologically distinct domains, including a polygonal network of tubules that is connected by three-way junctions. This network is found in all eukaryotic cells. Extracts from Xenopus laevis eggs contain stockpiles of components that allow the assembly of an ER network in vitro. Here we provide protocols for assembly of ER networks in extracts that are arrested at different stages of the cell cycle. Unfertilized Xenopus laevis eggs contain a cytostatic factor (CSF) that keeps them in the metaphase stage of the cell cycle. Disruption of the eggs by low-speed centrifugation releases calcium and the eggs cycle into interphase. This state can then be maintained by the addition of cycloheximide, which prevents the synthesis of cyclin B. CSF extracts can be also prepared in the presence of a calcium chelator, thus keeping the extract in metaphase. In this protocol, we outline procedures for the assembly of an ER network using either interphase- or metaphase-arrested Xenopus egg extracts. The network assembled is strikingly similar to the network observed in tissue culture cells. The extract allows easy biochemical manipulation, permitting the effects of purified proteins or small molecules, or the depletion of cytosolic components to be tested.


Asunto(s)
Mezclas Complejas/aislamiento & purificación , Retículo Endoplásmico/metabolismo , Oocitos/química , Xenopus , Animales
4.
J Biol Chem ; 293(23): 8982-8993, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29685888

RESUMEN

Many Gram-negative bacterial pathogens use a type III secretion system to infect eukaryotic cells. The injection of bacterial toxins or protein effectors via this system is accomplished through a plasma membrane channel formed by two bacterial proteins, termed translocators, whose assembly and membrane-insertion mechanisms are currently unclear. Here, using purified proteins we demonstrate that the translocators PopB and PopD in Pseudomonas aeruginosa assemble heterodimers in membranes, leading to stably inserted hetero-complexes. Using site-directed fluorescence labeling with an environment-sensitive probe, we found that hydrophobic segments in PopD anchor the translocator to the membrane, but without adopting a typical transmembrane orientation. A fluorescence dual-quenching assay revealed that the presence of PopB changes the conformation adopted by PopD segments in membranes. Furthermore, analysis of PopD's interaction with human cell membranes revealed that PopD adopts a distinctive conformation when PopB is present. An N-terminal region of PopD is only exposed to the host cytosol when PopB is present. We conclude that PopB assists with the proper insertion of PopD in cell membranes, required for the formation of a functional translocon and host infection.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiología , Sistemas de Secreción Tipo III/metabolismo , Membrana Celular/metabolismo , Membrana Celular/microbiología , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Multimerización de Proteína , Infecciones por Pseudomonas/microbiología
5.
Elife ; 52016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27619977

RESUMEN

In higher eukaryotes, the endoplasmic reticulum (ER) contains a network of membrane tubules, which transitions into sheets during mitosis. Network formation involves curvature-stabilizing proteins, including the reticulons (Rtns), as well as the membrane-fusing GTPase atlastin (ATL) and the lunapark protein (Lnp). Here, we have analyzed how these proteins cooperate. ATL is needed to not only form, but also maintain, the ER network. Maintenance requires a balance between ATL and Rtn, as too little ATL activity or too high Rtn4a concentrations cause ER fragmentation. Lnp only affects the abundance of three-way junctions and tubules. We suggest a model in which ATL-mediated fusion counteracts the instability of free tubule ends. ATL tethers and fuses tubules stabilized by the Rtns, and transiently sits in newly formed three-way junctions. Lnp subsequently moves into the junctional sheets and forms oligomers. Lnp is inactivated by mitotic phosphorylation, which contributes to the tubule-to-sheet conversion of the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Eucariontes
6.
J Biol Chem ; 291(12): 6304-15, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26786106

RESUMEN

A type 3 secretion system is used by many bacterial pathogens to inject proteins into eukaryotic cells. Pathogens insert a translocon complex into the target eukaryotic membrane by secreting two proteins known as translocators. How these translocators form a translocon in the lipid bilayer and why both proteins are required remains elusive. Pseudomonas aeruginosa translocators PopB and PopD insert pores into membranes forming homo- or hetero-complexes of undetermined stoichiometry. Single-molecule fluorescence photobleaching experiments revealed that PopD formed mostly hexameric structures in membranes, whereas PopB displayed a bi-modal distribution with 6 and 12 subunits peaks. However, individually the proteins are not functional for effector translocation. We have found that when added together, the translocators formed distinct hetero-complexes containing 8 PopB and 8 PopD molecules. Thus, the interaction between PopB and PopD guide the assembly of a unique hetero-oligomer in membranes.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Pseudomonas aeruginosa , Sistemas de Secreción Tipo III/química , Antígenos Bacterianos/fisiología , Proteínas Bacterianas/fisiología , Membrana Celular/metabolismo , Células HeLa , Humanos , Membrana Dobles de Lípidos/química , Unión Proteica , Multimerización de Proteína , Sistemas de Secreción Tipo III/fisiología
7.
Proc Natl Acad Sci U S A ; 112(15): E1851-60, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25825753

RESUMEN

Atlastin (ATL), a membrane-anchored GTPase that mediates homotypic fusion of endoplasmic reticulum (ER) membranes, is required for formation of the tubular network of the peripheral ER. How exactly ATL mediates membrane fusion is only poorly understood. Here we show that fusion is preceded by the transient tethering of ATL-containing vesicles caused by the dimerization of ATL molecules in opposing membranes. Tethering requires GTP hydrolysis, not just GTP binding, because the two ATL molecules are pulled together most strongly in the transition state of GTP hydrolysis. Most tethering events are futile, so that multiple rounds of GTP hydrolysis are required for successful fusion. Supported lipid bilayer experiments show that ATL molecules sitting on the same (cis) membrane can also undergo nucleotide-dependent dimerization. These results suggest that GTP hydrolysis is required to dissociate cis dimers, generating a pool of ATL monomers that can dimerize with molecules on a different (trans) membrane. In addition, tethering and fusion require the cooperation of multiple ATL molecules in each membrane. We propose a comprehensive model for ATL-mediated fusion that takes into account futile tethering and competition between cis and trans interactions.


Asunto(s)
Proteínas de Drosophila/metabolismo , GTP Fosfohidrolasas/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Algoritmos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Transferencia Resonante de Energía de Fluorescencia , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Guanosina Trifosfato/metabolismo , Hidrólisis , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Modelos Moleculares , Mutación , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Imagen de Lapso de Tiempo , Vesículas Transportadoras/química
8.
Proc Natl Acad Sci U S A ; 111(49): E5243-51, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25404289

RESUMEN

The peripheral endoplasmic reticulum (ER) forms different morphologies composed of tubules and sheets. Proteins such as the reticulons shape the ER by stabilizing the high membrane curvature in cross-sections of tubules and sheet edges. Here, we show that membrane curvature along the edge lines is also critical for ER shaping. We describe a theoretical model that explains virtually all observed ER morphologies. The model is based on two types of curvature-stabilizing proteins that generate either straight or negatively curved edge lines (R- and S-type proteins). Dependent on the concentrations of R- and S-type proteins, membrane morphologies can be generated that consist of tubules, sheets, sheet fenestrations, and sheet stacks with helicoidal connections. We propose that reticulons 4a/b are representatives of R-type proteins that favor tubules and outer edges of sheets. Lunapark is an example of S-type proteins that promote junctions between tubules and sheets. In a tubular ER network, lunapark stabilizes three-way junctions, i.e., small triangular sheets with concave edges. The model agrees with experimental observations and explains how curvature-stabilizing proteins determine ER morphology.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Células COS , Chlorocebus aethiops , Elasticidad , Células HEK293 , Proteínas de Homeodominio/química , Humanos , Imagenología Tridimensional , Microscopía Fluorescente , Modelos Biológicos , Conformación Proteica , Interferencia de ARN , Factores de Tiempo , Xenopus laevis
9.
J Cell Biol ; 203(5): 801-14, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24297752

RESUMEN

In metazoans the endoplasmic reticulum (ER) changes during the cell cycle, with the nuclear envelope (NE) disassembling and reassembling during mitosis and the peripheral ER undergoing extensive remodeling. Here we address how ER morphology is generated during the cell cycle using crude and fractionated Xenopus laevis egg extracts. We show that in interphase the ER is concentrated at the microtubule (MT)-organizing center by dynein and is spread by outward extension of ER tubules through their association with plus ends of growing MTs. Fusion of membranes into an ER network is dependent on the guanosine triphosphatase atlastin (ATL). NE assembly requires fusion by both ATL and ER-soluble N-ethyl-maleimide-sensitive factor adaptor protein receptors. In mitotic extracts, the ER converts into a network of sheets connected by ER tubules and loses most of its interactions with MTs. Together, these results indicate that fusion of ER membranes by ATL and interaction of ER with growing MT ends and dynein cooperate to generate distinct ER morphologies during the cell cycle.


Asunto(s)
Ciclo Celular , Retículo Endoplásmico/ultraestructura , Animales , Fraccionamiento Celular , Dineínas/análisis , Dineínas/metabolismo , Dineínas/fisiología , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/fisiología , Interfase , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Fusión de Membrana , Centro Organizador de los Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Xenopus laevis
10.
J Biol Chem ; 288(43): 31042-51, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24019520

RESUMEN

Cytolysin A (ClyA) is an α-pore forming toxin from pathogenic Escherichia coli (E. coli) and Salmonella enterica. Here, we report that E. coli ClyA assembles into an oligomeric structure in solution in the absence of either bilayer membranes or detergents at physiological temperature. These oligomers can rearrange to create transmembrane pores when in contact with detergents or biological membranes. Intrinsic fluorescence measurements revealed that oligomers adopted an intermediate state found during the transition between monomer and transmembrane pore. These results indicate that the water-soluble oligomer represents a prepore intermediate state. Furthermore, we show that ClyA does not form transmembrane pores on E. coli lipid membranes. Because ClyA is delivered to the target host cell in an oligomeric conformation within outer membrane vesicles (OMVs), our findings suggest ClyA forms a prepore oligomeric structure independently of the lipid membrane within the OMV. The proposed model for ClyA represents a non-classical pathway to attack eukaryotic host cells.


Asunto(s)
Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Modelos Químicos , Multimerización de Proteína/fisiología , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Salmonella enterica/química , Salmonella enterica/genética , Salmonella enterica/metabolismo
11.
Biochemistry ; 52(22): 3939-48, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23651212

RESUMEN

Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis. To investigate the role of VP4 in viral release and its mechanism of action, VP4 was expressed and purified from bacteria as a fusion protein for use in membrane disruption assays. Purified VP4 perforated membranes as demonstrated by the release of fluorescent markers encapsulated within large unilamellar vesicles or liposomes. Dynamic light scattering results revealed that VP4 treatment did not cause membrane lysis or change the size of the liposomes. Liposomes encapsulated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene-labeled streptavidin were used to show that VP4 formed stable pores in membranes. These VP4 pores had an inner diameter of 1-5 nm. Asymmetrical liposomes containing pyrene-labeled lipids in the outer monolayer were employed to monitor transbilayer lipid diffusion. Consistent with VP4 forming toroidal pore structures in membranes, VP4 induced transbilayer lipid diffusion or lipid flip-flop. Altogether, these studies support a central role for VP4 acting as a viroporin in the disruption of cellular membranes to trigger SV40 viral release by forming toroidal pores that unite the outer and inner leaflets of membrane bilayers.


Asunto(s)
Membranas/efectos de los fármacos , Virus 40 de los Simios/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/fisiología , Liberación del Virus/fisiología , Membrana Celular , Membrana Dobles de Lípidos/química , Liposomas/química , Membranas/metabolismo
12.
J Biol Chem ; 286(48): 41656-41668, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21965687

RESUMEN

The molecular architecture and composition of the outer membrane (OM) of Treponema pallidum (Tp), the noncultivable agent of venereal syphilis, differ considerably from those of typical Gram-negative bacteria. Several years ago we described TP0453, the only lipoprotein associated with the inner leaflet of the Tp OM. Whereas polypeptides of other treponemal lipoproteins are hydrophilic, non-lipidated TP0453 can integrate into membranes, a property attributed to its multiple amphipathic helices (AHs). Furthermore, membrane integration of the TP0453 polypeptide was found to increase membrane permeability, suggesting the molecule functions in a porin-like manner. To better understand the mechanism of membrane integration of TP0453 and its physiological role in Tp OM biogenesis, we solved its crystal structure and used mutagenesis to identify membrane insertion elements. The crystal structure of TP0453 consists of an α/ß/α-fold and includes five stably folded AHs. In high concentrations of detergent, TP0453 transitions from a closed to open conformation by lateral movement of two groups of AHs, exposing a large hydrophobic cavity. Triton X-114 phase partitioning, liposome floatation assay, and bis-1-anilino-8-naphthalenesulfonate binding revealed that two adjacent AHs are critical for membrane sensing/integration. Using terbium-dipicolinic acid complex-loaded large unilamellar vesicles, we found that TP0453 increased efflux of fluorophore only at acidic pH. Gel filtration and cross-linking experiments demonstrated that one AH critical for membrane sensing/insertion also forms a dimeric interface. Based on structural dynamics and comparison with Mycobacterium tuberculosis lipoproteins LprG and LppX, we propose that TP0453 functions as a carrier of lipids, glycolipids, and/or derivatives during OM biogenesis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Permeabilidad de la Membrana Celular , Membrana Celular/química , Multimerización de Proteína , Treponema pallidum/química , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Liposomas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Conejos , Sífilis/genética , Sífilis/metabolismo , Treponema pallidum/genética , Treponema pallidum/metabolismo
13.
PLoS Pathog ; 7(6): e1002116, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21738474

RESUMEN

Nonenveloped viruses are generally released by the timely lysis of the host cell by a poorly understood process. For the nonenveloped virus SV40, virions assemble in the nucleus and then must be released from the host cell without being encapsulated by cellular membranes. This process appears to involve the well-controlled insertion of viral proteins into host cellular membranes rendering them permeable to large molecules. VP4 is a newly identified SV40 gene product that is expressed at late times during the viral life cycle that corresponds to the time of cell lysis. To investigate the role of this late expressed protein in viral release, water-soluble VP4 was expressed and purified as a GST fusion protein from bacteria. Purified VP4 was found to efficiently bind biological membranes and support their disruption. VP4 perforated membranes by directly interacting with the membrane bilayer as demonstrated by flotation assays and the release of fluorescent markers encapsulated into large unilamellar vesicles or liposomes. The central hydrophobic domain of VP4 was essential for membrane binding and disruption. VP4 displayed a preference for membranes comprised of lipids that replicated the composition of the plasma membranes over that of nuclear membranes. Phosphatidylethanolamine, a lipid found at high levels in bacterial membranes, was inhibitory against the membrane perforation activity of VP4. The disruption of membranes by VP4 involved the formation of pores of ∼3 nm inner diameter in mammalian cells including permissive SV40 host cells. Altogether, these results support a central role of VP4 acting as a viroporin in the perforation of cellular membranes to trigger SV40 viral release.


Asunto(s)
Porinas/metabolismo , Virus 40 de los Simios/metabolismo , Proteínas Estructurales Virales/metabolismo , Liberación del Virus/fisiología , Membrana Celular/metabolismo , Membrana Celular/virología , Técnica del Anticuerpo Fluorescente , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Liposomas/metabolismo , Fosfatidiletanolaminas/metabolismo , Porosidad , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Proteínas Estructurales Virales/genética
14.
Biochemistry ; 50(33): 7117-31, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21770428

RESUMEN

Translocation of bacterial toxins or effectors into host cells using the type III secretion (T3S) system is a conserved mechanism shared by many Gram-negative pathogens. Pseudomonas aeruginosa injects different proteins across the plasma membrane of target cells, altering the normal metabolism of the host. Protein translocation presumably occurs through a proteinaceous transmembrane pore formed by two T3S secreted protein translocators, PopB and PopD. Unfolded translocators are secreted through the T3S needle prior to insertion into the target membrane. Purified PopB and PopD form pores in model membranes. However, their tendency to form heterogeneous aggregates in solution had hampered the analysis of how these proteins undergo the transition from a denatured state to a membrane-inserted state. Translocators were purified as stable complexes with the cognate chaperone PcrH and isolated from the chaperone using 6 M urea. We report here the assembly of stable transmembrane pores by dilution of urea-denatured translocators in the presence of membranes. PopB and PopD spontaneously bound liposomes containing anionic phospholipids and cholesterol in a pH-dependent manner as observed by two independent assays, time-resolved Förster resonance energy transfer and sucrose-step gradient ultracentrifugation. Using Bodipy-labeled proteins, we found that PopB interacts with PopD on the membrane surface as determined by excitation energy migration and fluorescence quenching. Stable transmembrane pores are more efficiently assembled at pH <5.0, suggesting that acidic residues might be involved in the initial membrane binding and/or insertion. Altogether, the experimental setup described here represents an efficient method for the reconstitution and analysis of membrane-inserted translocators.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Liposomas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/química , Toxinas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/metabolismo , Transporte Biológico , Microscopía por Crioelectrón , Transferencia Resonante de Energía de Fluorescencia , Chaperonas Moleculares/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/aislamiento & purificación , Unión Proteica , Transporte de Proteínas , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Espectrometría de Fluorescencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...