Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1070, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326317

RESUMEN

In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, current methods to measure cytoplasmic and nuclear volumes, including confocal 3D reconstruction, have limitations, such as relying on two-dimensional projections or poor vertical resolution. Here, to overcome these limitations, we describe a method, N2FXm, to jointly measure cytoplasmic and nuclear volumes in single cultured adhering human cells, in real time, and across cell cycles. We find that this method accurately provides joint size over dynamic measurements and at different time resolutions. Moreover, by combining several experimental perturbations and analyzing a mathematical model including osmotic effects and tension, we show that N2FXm can give relevant insights on how mechanical forces exerted by the cytoskeleton on the nuclear envelope can affect the growth of nucleus volume by biasing nuclear import. Our method, by allowing for accurate joint nuclear and cytoplasmic volume dynamic measurements at different time resolutions, highlights the non-constancy of the nucleus/cytoplasm ratio along the cell cycle.


Asunto(s)
Núcleo Celular , Membrana Nuclear , Animales , Humanos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol , Membrana Nuclear/metabolismo , Citoesqueleto/metabolismo , Mamíferos
2.
Phys Rev E ; 101(4-1): 042403, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32422852

RESUMEN

Growing rod-shaped bacterial cells need to modulate the production rates of different surface and bulk components. Population data show that the balance between these rates is central for cell physiology and affects cell shape, but we still know little about these processes in single cells. We study a minimal stochastic model where single cells grow by two fluctuating volume-specific surface and volume growth rates, solving for the steady-state distributions and the correlation functions of the main geometric features. Our predictions allow us to address the detectability of different scenarios for the intrinsic coupling between the allocation of resources to surface and bulk growth.


Asunto(s)
Modelos Biológicos , Proliferación Celular , Homeostasis , Procesos Estocásticos , Propiedades de Superficie
3.
Nat Commun ; 11(1): 2122, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358486

RESUMEN

Cell polarity refers to the intrinsic asymmetry of cells, including the orientation of the cytoskeleton. It affects cell shape and structure as well as the distribution of proteins and organelles. In migratory cells, front-rear polarity is essential and dictates movement direction. While the link between the cytoskeleton and nucleus is well-studied, we aim to investigate if front-rear polarity can be transmitted to the nucleus. We show that the knock-down of emerin, an integral protein of the nuclear envelope, abolishes preferential localization of several nuclear proteins. We propose that the frontally biased localization of the endoplasmic reticulum, through which emerin reaches the nuclear envelope, is sufficient to generate its observed bias. In primary emerin-deficient myoblasts, its expression partially rescues the polarity of the nucleus. Our results demonstrate that front-rear cell polarity is transmitted to the nucleus and that emerin is an important determinant of nuclear polarity.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Western Blotting , Línea Celular , Núcleo Celular/ultraestructura , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mioblastos/metabolismo , Mioblastos/ultraestructura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Interferencia de ARN
4.
Genome Biol Evol ; 5(2): 370-88, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23355306

RESUMEN

We generated a genome-wide replication profile in the genome of Lachancea kluyveri and assessed the relationship between replication and base composition. This species diverged from Saccharomyces cerevisiae before the ancestral whole genome duplication. The genome comprises eight chromosomes among which a chromosomal arm of 1 Mb has a G + C-content much higher than the rest of the genome. We identified 252 active replication origins in L. kluyveri and found considerable divergence in origin location with S. cerevisiae and with Lachancea waltii. Although some global features of S. cerevisiae replication are conserved: Centromeres replicate early, whereas telomeres replicate late, we found that replication origins both in L. kluyveri and L. waltii do not behave as evolutionary fragile sites. In L. kluyveri, replication timing along chromosomes alternates between regions of early and late activating origins, except for the 1 Mb GC-rich chromosomal arm. This chromosomal arm contains an origin consensus motif different from other chromosomes and is replicated early during S-phase. We showed that precocious replication results from the specific absence of late firing origins in this chromosomal arm. In addition, we found a correlation between GC-content and distance from replication origins as well as a lack of replication-associated compositional skew between leading and lagging strands specifically in this GC-rich chromosomal arm. These findings suggest that the unusual base composition in the genome of L. kluyveri could be linked to replication.


Asunto(s)
Replicación del ADN/genética , Secuencia Rica en GC/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Centrómero/genética , Cromosomas/genética , Origen de Réplica , Fase S/genética , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...