Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 36(1): 40-64, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37811656

RESUMEN

Inflorescence architecture is important for rice (Oryza sativa) grain yield. The phytohormone cytokinin (CK) has been shown to regulate rice inflorescence development; however, the underlying mechanism mediated by CK perception is still unclear. Employing a forward genetic approach, we isolated an inactive variant of the CK receptor OHK4/OsHK4 gene named panicle length1, which shows decreased panicle size due to reduced inflorescence meristem (IM) activity. A 2-amino acid deletion in the long α-helix stalk of the sensory module of OHK4 impairs the homodimerization and ligand-binding capacity of the receptor, even though the residues do not touch the ligand-binding domain or the dimerization interface. This deletion impairs CK signaling that occurs through the type-B response regulator OsRR21, which acts downstream of OHK4 in controlling inflorescence size. Meanwhile, we found that IDEAL PLANT ARCHITECTURE1(IPA1)/WEALTHY FARMER'S PANICLE (WFP), encoding a positive regulator of IM development, acts downstream of CK signaling and is directly activated by OsRR21. Additionally, we revealed that IPA1/WFP directly binds to the OHK4 promoter and upregulates its expression through interactions with 2 TCP transcription factors, forming a positive feedback circuit. Altogether, we identified the OHK4-OsRR21-IPA1 regulatory module, providing important insights into the role of CK signaling in regulating rice inflorescence architecture.


Asunto(s)
Citocininas , Oryza , Humanos , Citocininas/metabolismo , Inflorescencia , Oryza/metabolismo , Retroalimentación , Agricultores , Ligandos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511169

RESUMEN

It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.


Asunto(s)
Arabidopsis , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Filogenia , Tetraploidía , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 24(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37176101

RESUMEN

The main reserve polysaccharide of plants-starch-is undoubtedly important for humans. One of the main sources of starch is the potato tuber, which is able to preserve starch for a long time during the so-called dormancy period. However, accumulated data show that this dormancy is only relative, which raises the question of the possibility of some kind of starch restructuring during dormancy periods. Here, the effect of long-term periods of tuber rest (at 2-4 °C) on main parameters of starches of potato tubers grown in vivo or in vitro were studied. Along with non-transgenic potatoes, Arabidopsis phytochrome B (AtPHYB) transformants were investigated. Distinct changes in starch micro and macro structures-an increase in proportion of amorphous lamellae and of large-sized and irregular-shaped granules, as well as shifts in thickness of the crystalline lamellae-were detected. The degree of such alterations, more pronounced in AtPHYB-transgenic tubers, increased with the longevity of tuber dormancy. By contrast, the polymorphic crystalline structure (B-type) of starch remained unchanged regardless of dormancy duration. Collectively, our data support the hypothesis that potato starch remains metabolically and structurally labile during the entire tuber life including the dormancy period. The revealed starch remodeling may be considered a process of tuber preadaptation to the upcoming sprouting stage.


Asunto(s)
Solanum tuberosum , Almidón , Humanos , Almidón/química , Solanum tuberosum/química , Tubérculos de la Planta , Plantas , Termodinámica
4.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203244

RESUMEN

Cytokinins (CK) are one of the most important classes of phytohormones that regulate a wide range of processes in plants. A CK receptor, a sensor hybrid histidine kinase, was discovered more than 20 years ago, but the structural basis for its signaling is still a challenge for plant biologists. To date, only two fragments of the CK receptor structure, the sensory module and the receiver domain, were experimentally resolved. Some other regions were built up by molecular modeling based on structures of proteins homologous to CK receptors. However, in the long term, these data have proven insufficient for solving the structure of the full-sized CK receptor. The functional unit of CK receptor is the receptor dimer. In this article, a molecular structure of the dimeric form of the full-length CK receptor based on AlphaFold Multimer and ColabFold modeling is presented for the first time. Structural changes of the receptor upon interacting with phosphotransfer protein are visualized. According to mathematical simulation and available data, both types of dimeric receptor complexes with hormones, either half- or fully liganded, appear to be active in triggering signals. In addition, the prospects of using this and similar models to address remaining fundamental problems of CK signaling were outlined.


Asunto(s)
Citocininas , Reguladores del Crecimiento de las Plantas , Humanos , Membrana Celular , Simulación por Computador , Personal de Salud , Histidina Quinasa/genética , Polímeros
5.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361937

RESUMEN

Auxins and cytokinins are considered the most important plant hormones, responsible for fundamental traits of the plant organism [...].


Asunto(s)
Citocininas , Ácidos Indolacéticos , Transporte Biológico , Transducción de Señal , Reguladores del Crecimiento de las Plantas , Percepción , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas
6.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232653

RESUMEN

Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied as potential cytokinins or anticytokinins. All compounds contained a methyl group at the α-carbon atom of the benzyl moiety, making them R- or S-enantiomers. Four pairs of chiral nucleobases and corresponding ribonucleosides containing various substituents at the C2 position of adenine heterocycle were synthesized. A nucleophilic substitution reaction by secondary optically active amines was used. A strong influence of the chirality of studied compounds on their interaction with individual cytokinin receptors of Arabidopsis thaliana was uncovered in in vivo and in vitro assays. The AHK2 and CRE1/AHK4 receptors were shown to have low affinity for the studied S-nucleobases while the AHK3 receptor exhibited significant affinity for most of them. Thereby, three synthetic AHK3-specific cytokinins were discovered: N6-((S)-α-methylbenzyl)adenine (S-MBA), 2-fluoro,N6-((S)-α-methylbenzyl)adenine (S-FMBA) and 2-chloro,N6-((S)-α-methylbenzyl)adenine (S-CMBA). Interaction patterns between individual receptors and specific enantiomers were rationalized by structure analysis and molecular docking. Two other S-enantiomers (N6-((S)-α-methylbenzyl)adenosine, 2-amino,N6-((S)-α-methylbenzyl)adenosine) were found to exhibit receptor-specific and chirality-dependent anticytokinin properties.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ribonucleósidos , Adenina , Adenosina/farmacología , Aminas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Compuestos de Bencilo , Carbono , Proteínas Portadoras , Citocininas/química , Citocininas/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Reguladores del Crecimiento de las Plantas , Proteínas Quinasas/metabolismo , Purinas
7.
Planta ; 255(1): 27, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940934

RESUMEN

MAIN CONCLUSION: The free bases of cytokinins are the biologically active forms of the hormone while cytokinin ribosides become active only upon removal of the ribose residue. Cytokinins (CKs) belong to the classical plant hormones. They were discovered more than 65 years ago, but which molecular forms possess genuine CK activity is still matter of debate. Numerous studies support the view that only the free bases are the biologically active molecules. This standpoint has been challenged in a recent review (Nguyen et al. in Planta 254: 45, 2021) proposing that also CK ribosides may have genuine own CK activity. Here we critically discuss the pros and cons of this viewpoint considering the results of biological assays, CK binding studies, 3D structural data of CK-receptor interaction and mutant analyses. It is concluded that all types of study provide clear and convincing evidence only for biological activity of free bases and not ribosides; the latter are rather a transport form of the hormone without their own biological activity.


Asunto(s)
Citocininas , Reguladores del Crecimiento de las Plantas , Glicósidos
8.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884882

RESUMEN

Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.


Asunto(s)
Citocininas/metabolismo , Embryophyta/metabolismo , Histidina Quinasa/metabolismo , Isopenteniladenosina/metabolismo , Bryopsida/metabolismo , Biología Computacional , Concentración de Iones de Hidrógeno , Picea/metabolismo , Proteínas de Plantas/metabolismo , Selaginellaceae/metabolismo , Especificidad por Sustrato
9.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360972

RESUMEN

Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.


Asunto(s)
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Solanum tuberosum/metabolismo , Genes de Plantas , Desarrollo de la Planta , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Sacarosa/metabolismo
10.
Plant Sci ; 307: 110880, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33902848

RESUMEN

Auxin alone or supplemented with cytokinins and strigolactones were long considered as the main player(s) in the control of apical dominance (AD) and correlative inhibition of the lateral bud outgrowth, the processes that shape the plant phenotype. However, past decade data indicate a more sophisticated pathways of AD regulation, with the involvement of mobile carbohydrates which perform both signal and trophic functions. Here we provide a critical comprehensive overview of the current status of the AD problem. This includes insight into intimate mechanisms regulating directed auxin transport in axillary buds with participation of phytohormones and sugars. Also roles of auxin, cytokinin and sugars in the dormancy or sustained growth of the lateral meristems were assigned. This review not only provides the latest data on implicated phytohormone crosstalk and its relationship with the signaling of sugars and abscisic acid, new AD players, but also focuses on the emerging biochemical mechanisms, at first positive feedback loops involving both sugars and hormones, that ensure the sustained bud growth. Data show that sugars act in concert with cytokinins but antagonistically to strigolactone signaling. A complex bud growth regulating network is demonstrated and unresolved issues regarding the hormone-carbohydrate regulation of AD are highlighted.


Asunto(s)
Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Citocininas/metabolismo
11.
Trends Plant Sci ; 26(4): 305-308, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33618985

RESUMEN

The recent discovery of cytokinin transporters in the endoplasmic reticulum (ER) membrane provides a missing link to understand cellular cytokinin trafficking and signaling. Along with cytokinin receptors and metabolic enzymes previously found in the ER, these transporters complement the ER-confined infrastructure required for cytokinin signal generation and modulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Retículo Endoplásmico , Membranas Intracelulares
12.
Anal Biochem ; 599: 113734, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32305427

RESUMEN

The aqueous two-phase partition system (ATPS) is a method widely used to separate and purify plant and animal membranes carrying bound proteins. However, a common problem of this separation is a mutual contamination of obtained phases. Such contamination adversely affects the accuracy of values of the protein of interest partition between particular membranes when determined by direct measurement. In order to overcome this problem, we have developed a fairly simple mathematical algorithm and found formulas designed to quantify correctly the distribution of the protein of interest between two different membranes. This new tool makes it possible to determine the bias-adjusted ratio of protein distribution between the membranes, regardless of the efficiency of membrane separation in a two-phase system. By means of this algorithm, not only current, but also a number of previously published ATPS-based experiments were (re)analyzed and quantified. The quantitative results of this large-scale analysis of the subcellular localization of various membrane proteins from Arabidopsis, potato, melon, and corn including cytokinin and ethylene receptors, ABCG14 cytokinin transporters, LRR receptor-like protein kinases, and BAK1 co-receptors are presented and discussed here.


Asunto(s)
Membranas Intracelulares/química , Proteínas de la Membrana/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Algoritmos , Fraccionamiento Químico
13.
Plant Cell ; 32(5): 1501-1518, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32205456

RESUMEN

Leaf morphogenesis requires growth polarized along three axes-proximal-distal (P-D) axis, medial-lateral axis, and abaxial-adaxial axis. Grass leaves display a prominent P-D polarity consisting of a proximal sheath separated from the distal blade by the auricle and ligule. Although proper specification of the four segments is essential for normal morphology, our knowledge is incomplete regarding the mechanisms that influence P-D specification in monocots such as maize (Zea mays). Here, we report the identification of the gene underlying the semidominant, leaf patterning maize mutant Hairy Sheath Frayed1 (Hsf1). Hsf1 plants produce leaves with outgrowths consisting of proximal segments-sheath, auricle, and ligule-emanating from the distal blade margin. Analysis of three independent Hsf1 alleles revealed gain-of-function missense mutations in the ligand binding domain of the maize cytokinin (CK) receptor Z. mays Histidine Kinase1 (ZmHK1) gene. Biochemical analysis and structural modeling suggest the mutated residues near the CK binding pocket affect CK binding affinity. Treatment of the wild-type seedlings with exogenous CK phenocopied the Hsf1 leaf phenotypes. Results from expression and epistatic analyses indicated the Hsf1 mutant receptor appears to be hypersignaling. Our results demonstrate that hypersignaling of CK in incipient leaf primordia can reprogram developmental patterns in maize.


Asunto(s)
Tipificación del Cuerpo , Citocininas/metabolismo , Mutación/genética , Hojas de la Planta/embriología , Hojas de la Planta/genética , Transducción de Señal , Zea mays/genética , Sitios de Unión , Mutación con Ganancia de Función/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ligandos , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación hacia Arriba/genética
14.
Biomolecules ; 10(1)2020 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-31948077

RESUMEN

The biosynthesis of aromatic cytokinins in planta, unlike isoprenoid cytokinins, is still unknown. To compare the final steps of biosynthesis pathways of aromatic and isoprenoid cytokinins, we synthesized a series of nucleoside derivatives of natural cytokinins starting from acyl-protected ribofuranosyl-, 2'-deoxyribofuranosyl- and 5'-deoxyribofuranosyladenine derivatives using stereoselective alkylation with further deblocking. Their cytokinin activity was determined in two bioassays based on model plants Arabidopsis thaliana and Amaranthus caudatus. Unlike cytokinins, cytokinin nucleosides lack the hormonal activity until the ribose moiety is removed. According to our experiments, ribo-, 2'-deoxyribo- and 5'-deoxyribo-derivatives of isoprenoid cytokinin N6-isopentenyladenine turned in planta into active cytokinins with clear hormonal activity. As for aromatic cytokinins, both 2'-deoxyribo- and 5'-deoxyribo-derivatives did not exhibit analogous activity in Arabidopsis. The 5'-deoxyribo-derivatives cannot be phosphorylated enzymatically in vivo; therefore, they cannot be "activated" by the direct LOG-mediated cleavage, largely occurring with cytokinin ribonucleotides in plant cells. The contrasting effects exerted by deoxyribonucleosides of isoprenoid (true hormonal activity) and aromatic (almost no activity) cytokinins indicates a significant difference in the biosynthesis of these compounds.


Asunto(s)
Citocininas/biosíntesis , Citocininas/química , Terpenos/química , Arabidopsis/metabolismo , Citocininas/metabolismo , Nucleósidos/análogos & derivados , Nucleósidos/síntesis química , Nucleósidos/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Terpenos/metabolismo
15.
Front Plant Sci ; 11: 613624, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408733

RESUMEN

Cytokinins (CKs) were earlier shown to promote potato tuberization. Our study aimed to identify and characterize CK-related genes which constitute CK regulatory system in the core potato (Solanum tuberosum) genome. For that, CK-related genes were retrieved from the sequenced genome of the S. tuberosum doubled monoploid (DM) Phureja group, classified and compared with Arabidopsis orthologs. Analysis of selected gene expression was performed with a transcriptome database for the S. tuberosum heterozygous diploid line RH89-039-16. Genes responsible for CK signaling, biosynthesis, transport, and metabolism were categorized in an organ-specific fashion. According to this database, CK receptors StHK2/3 predominate in leaves and flowers, StHK4 in roots. Among phosphotransmitters, StHP1a expression largely predominates. Surprisingly, two pseudo-phosphotransmitters intended to suppress CK effects are hardly expressed in studied organs. Among B-type RR genes, StRR1b, StRR11, and StRR18a are actively expressed, with StRR1b expressing most uniformly in all organs and StRR11 exhibiting the highest expression in roots. By cluster analysis four types of prevailing CK-signaling chains were identified in (1) leaves and flowers, StHK2/3→S t H P1a→StRR1b/+; (2) shoot apical meristems, stolons, and mature tubers, StHK2/4→S t H P1a→StRR1b/+; (3) stems and young tubers, StHK2/4→S t H P1a→StRR1b/11/18a; and (4) roots and tuber sprouts, StHK4→S t H P1a→StRR11/18a. CK synthesis genes StIPT3/5 and StCYP735A are expressed mainly in roots followed by tuber sprouts, but rather weakly in stolons and tubers. By contrast, CK-activation genes StLOGs are active in stolons, and StLOG3b expression is even stolon-confined. Apparently, the main CK effects on tuber initiation are realized via activity of StLOG1/3a/3b/7c/8a genes in stolons. Current advances and future directions in potato research are discussed.

16.
Int J Mol Sci ; 20(9)2019 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31035389

RESUMEN

The signaling of cytokinins (CKs), classical plant hormones, is based on the interaction of proteins that constitute the multistep phosphorelay system (MSP): catalytic receptors-sensor histidine kinases (HKs), phosphotransmitters (HPts), and transcription factors-response regulators (RRs). Any CK receptor was shown to interact in vivo with any of the studied HPts and vice versa. In addition, both of these proteins tend to form a homodimer or a heterodimeric complex with protein-paralog. Our study was aimed at explaining by molecular modeling the observed features of in planta protein-protein interactions, accompanying CK signaling. For this purpose, models of CK-signaling proteins' structure from Arabidopsis and potato were built. The modeled interaction interfaces were formed by rather conserved areas of protein surfaces, complementary in hydrophobicity and electrostatic potential. Hot spots amino acids, determining specificity and strength of the interaction, were identified. Virtual phosphorylation of conserved Asp or His residues affected this complementation, increasing (Asp-P in HK) or decreasing (His-P in HPt) the affinity of interacting proteins. The HK-HPt and HPt-HPt interfaces overlapped, sharing some of the hot spots. MSP proteins from Arabidopsis and potato exhibited similar properties. The structural features of the modeled protein complexes were consistent with the experimental data.


Asunto(s)
Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal/fisiología , Modelos Biológicos , Unión Proteica
17.
Plant Cell Rep ; 38(6): 681-698, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30739137

RESUMEN

The study of the effects of auxins on potato tuberization corresponds to one of the oldest experimental systems in plant biology, which has remained relevant for over 70 years. However, only recently, in the postgenomic era, the role of auxin in tuber formation and other vital processes in potatoes has begun to emerge. This review describes the main results obtained over the entire period of auxin-potato research, including the effects of exogenous auxin; the content and dynamics of endogenous auxins; the effects of manipulating endogenous auxin content; the molecular mechanisms of auxin signaling, transport and inactivation; the role and position of auxin among other tuberigenic factors; the effects of auxin on tuber dormancy; the prospects for auxin use in potato biotechnology. Special attention is paid to recent insights into auxin function in potato tuberization and stress resistance. Taken together, the data discussed here leave no doubt on the important role of auxin in potato tuberization, particularly in the processes of tuber initiation, growth and sprouting. A new integrative model for the stage-dependent auxin action on tuberization is presented. In addition, auxin is shown to differentially affects the potato resistance to biotrophic and necrotrophic biopathogens. Thus, the modern auxin biology opens up new perspectives for further biotechnological improvement of potato crops.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
18.
J Exp Bot ; 69(16): 3839-3853, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29800344

RESUMEN

Potato is the most economically important non-cereal food crop. Tuber formation in potato is regulated by phytohormones, cytokinins (CKs) in particular. The present work studied CK signal perception in potato. The sequenced potato genome of doubled monoploid Phureja was used for bioinformatic analysis and as a tool for identification of putative CK receptors from autotetraploid potato cv. Désirée. All basic elements of multistep phosphorelay required for CK signal transduction were identified in the Phureja genome, including three genes orthologous to three CK receptor genes (AHK 2-4) of Arabidopsis. As distinct from Phureja, autotetraploid potato contains at least two allelic isoforms of each receptor type. Putative receptor genes from Désirée plants were cloned, sequenced and expressed, and the main characteristics of encoded proteins were determined, in particular their consensus motifs, modelled structure, ligand-binding properties, and ability to transmit CK signals. In all studied aspects the predicted sensor histidine kinases met the requirements for genuine CK receptors. Expression of potato CK receptors was found to be organ-specific and sensitive to growth conditions, particularly to sucrose content. Our results provide a solid basis for further in-depth study of CK signaling system and biotechnological improvement of potato.


Asunto(s)
Citocininas/metabolismo , Receptores de Superficie Celular/metabolismo , Solanum tuberosum/metabolismo , Alelos , Secuencia de Aminoácidos , Biotecnología , Genes de Plantas , Homocigoto , Filogenia , Regiones Promotoras Genéticas , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Homología de Secuencia de Aminoácido , Transducción de Señal , Solanum tuberosum/genética , Sacarosa/metabolismo
19.
Phytochemistry ; 149: 161-177, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29544164

RESUMEN

Biological effects of hormones in both plants and animals are based on high-affinity interaction with cognate receptors resulting in their activation. The signal of cytokinins, classical plant hormones, is perceived in Arabidopsis by three homologous membrane receptors: AHK2, AHK3, and CRE1/AHK4. To study the cytokinin-receptor interaction, we used 25 derivatives of potent cytokinin N6-benzyladenine (BA) with substituents in the purine heterocycle and/or in the side chain. The study was focused primarily on individual cytokinin receptors from Arabidopsis. The main in planta assay system was based on Arabidopsis double mutants retaining only one isoform of cytokinin receptors and harboring cytokinin-sensitive reporter gene. Classical cytokinin biotest with Amaranthus seedlings was used as an additional biotest. In parallel, the binding of ligands to individual cytokinin receptors was assessed in the in vitro test system. Quantitative comparison of results of different assays confirmed the partial similarity of ligand-binding properties of receptor isoforms. Substituents at positions 8 and 9 of adenine moiety, elongated linker up to 4 methylene units, and replacement of N6 by sulfur or oxygen have resulted in the suppression of cytokinin activity of the derivative toward all receptors. Introduction of a halogen into position 2 of adenine moiety, on the contrary, often increased the ligand activity, especially toward AHK3. Features both common and distinctive of cytokinin receptors in Arabidopsis and Amaranthus were revealed, highlighting species specificity of the cytokinin perception apparatus. Correlations between the extent to which a compound binds to a receptor in vitro and its ability to activate the same receptor in planta were evaluated for each AHK protein. Interaction patterns between individual receptors and ligands were rationalized by structure analysis and molecular docking in sensory modules of AHK receptors. The best correlation between docking scores and specific binding was observed for AHK3. In addition, receptor-specific ligands have been discovered with unique properties to predominantly activate or block distinct cytokinin receptors. These ligands are promising for practical application and as molecular tools in the study of the cytokinin perception by plant cells.


Asunto(s)
Adenina/análogos & derivados , Citocininas/metabolismo , Receptores de Citocinas/efectos de los fármacos , Adenina/farmacología , Arabidopsis/química , Estructura Molecular
20.
New Phytol ; 218(1): 41-53, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29355964

RESUMEN

Content Summary 47 I. Introduction 47 II. Historical outline 48 III. Recent developments 49 IV. Towards an integrative concept for cytokinin receptor signaling 54 Acknowledgements 57 References 57 SUMMARY: Cytokinin signaling plays an important role in plant growth and development, and therefore its molecular characteristics are under extensive study. One characteristic is the subcellular localization of cytokinin signal initiation. This localization determines both the pathway for hormone delivery to the receptor, as well as molecular aspects of signal transfer to the primary cellular targets. Subcellular sites for the onset of cytokinin signaling are still uncertain and experimental data are in part controversial. A few years ago, cytokinin receptors were shown to be localized predominantly in the membrane of the endoplasmic reticulum (ER) and to possess some features, such as their pH activity profile, typical for intracellular proteins. Very recently, new data corroborating the functionality of ER-located cytokinin receptors were reported. However, other work argued for cytokinin perception to occur at the plasma membrane (PM). Here, we discuss in detail these partially conflicting data and present an integrative model for cytokinin perception and signaling. In our opinion, the prevailing evidence argues for the ER being the predominant site of cytokinin signal perception but also that signal initiation at the PM might be relevant in some circumstances as well. The roles of these pathways in long-distance, paracrine and autocrine cytokinin signaling are discussed.


Asunto(s)
Membrana Celular/metabolismo , Citocininas/metabolismo , Retículo Endoplásmico/metabolismo , Transducción de Señal , Modelos Biológicos , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...