Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Infect Dis ; 75(1): e1-e9, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35435222

RESUMEN

BACKGROUND: During the ongoing coronavirus disease 2019 (COVID-19) pandemic, many individuals were infected with and have cleared the virus, developing virus-specific antibodies and effector/memory T cells. An important unanswered question is what levels of T-cell and antibody responses are sufficient to protect from the infection. METHODS: In 5340 Moscow residents, we evaluated anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin M (IgM)/immunoglobulin G (IgG) titers and frequencies of the T cells specific to the membrane, nucleocapsid, and spike proteins of SARS-CoV-2, using interferon gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay. Additionally, we evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFN-γ and interleukin 2 followed by flow cytometry. We analyzed the COVID-19 rates as a function of the assessed antibody and T-cell responses, using the Kaplan-Meier estimator method, for up to 300 days postinclusion. RESULTS: We showed that T-cell and antibody responses are closely interconnected and are commonly induced concurrently. Magnitudes of both responses inversely correlated with infection probability. Individuals positive for both responses demonstrated the highest levels of protectivity against the SARS-CoV-2 infection. A comparable level of protection was found in individuals with antibody response only, whereas the T-cell response by itself granted only intermediate protection. CONCLUSIONS: We found that the contribution of the virus-specific antibodies to protection against SARS-CoV-2 infection is more pronounced than that of the T cells. The data on the virus-specific IgG titers may be instructive for making decisions in personalized healthcare and public anti-COVID-19 policies. Clinical Trials Registration. NCT04898140.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Inmunoglobulina G , Estudios Prospectivos
2.
Front Behav Neurosci ; 15: 744715, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776891

RESUMEN

Multiphoton microscopy is one of several new technologies providing unprecedented insight into the activity dynamics and function of neural circuits. Unfortunately, some of these technologies require experimentation in head-restrained animals, limiting the behavioral repertoire that can be integrated and studied. This issue is especially evident in drug addiction research, as no laboratories have coupled multiphoton microscopy with simultaneous intravenous drug self-administration, a behavioral paradigm that has predictive validity for treatment outcomes and abuse liability. Here, we describe a new experimental assay wherein head-restrained mice will press an active lever, but not inactive lever, for intravenous delivery of heroin or cocaine. Similar to freely moving animals, we find that lever pressing is suppressed through daily extinction training and subsequently reinstated through the presentation of relapse-provoking triggers (drug-associative cues, the drug itself, and stressors). Finally, we show that head-restrained mice will show similar patterns of behavior for oral delivery of a sucrose reward, a common control used for drug self-administration experiments. Overall, these data demonstrate the feasibility of combining drug self-administration experiments with technologies that require head-restraint, such as multiphoton imaging. The assay described could be replicated by interested labs with readily available materials to aid in identifying the neural underpinnings of substance use disorder.

3.
Elife ; 102021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34184635

RESUMEN

Non-overlapping cell populations within dorsomedial prefrontal cortex (dmPFC), defined by gene expression or projection target, control dissociable aspects of reward seeking through unique activity patterns. However, even within these defined cell populations, considerable cell-to-cell variability is found, suggesting that greater resolution is needed to understand information processing in dmPFC. Here, we use two-photon calcium imaging in awake, behaving mice to monitor the activity of dmPFC excitatory neurons throughout Pavlovian reward conditioning. We characterize five unique neuronal ensembles that each encodes specialized information related to a sucrose reward, reward-predictive cues, and behavioral responses to those cues. The ensembles differentially emerge across daily training sessions - and stabilize after learning - in a manner that improves the predictive validity of dmPFC activity dynamics for deciphering variables related to behavioral conditioning. Our results characterize the complex dmPFC neuronal ensemble dynamics that stably predict reward availability and initiation of conditioned reward seeking following cue-reward learning.


Asunto(s)
Simulación por Computador , Glucosa/metabolismo , Mitocondrias/fisiología , Modelos Biológicos , Axones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...