Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Immun Ageing ; 21(1): 56, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169358

RESUMEN

BACKGROUND: Mouse brains can contain specific polyglucosan aggregates known as Periodic Acid-Schiff (PAS)-granules. Generated in astrocytes, these granules increase with age and exhibit neo-epitopes of carbohydrate nature that are recognized by natural IgM antibodies (IgMs). The existence of neoepitopes on PAS granules suggests the presence of neoepitopes in other brain structures, and this is investigated here. To this end, brain sections from SAMP8 and ICR-CD1 mice were examined at different ages. RESULTS: We have identified two novel structures that, apart from PAS granules, are recognized by natural IgMs. On one side, IgM reactive (IgM+) granular structures which are placed in the longitudinal fissure, the quadrigeminal cistern, and a region that extends from the quadrigeminal cistern to the interpeduncular cistern. This last region, located between the telencephalon and both the mesencephalon and diencephalon, is designated henceforth as the fissura magna, as it is indeed a fissure and the largest in the brain. As all these regions are extraparenchymal (EP), the IgM+ granules found in these zones have been named EP granules. These EP granules are mainly associated with fibroblasts and are not stained with PAS. On the other side, some IgM+ astrocytes have been found in the glia limitans, near the above-mentioned fissures. Remarkably, EP granules are more prevalent at younger ages, while the number of IgM+ astrocytes increases with age, similarly to the already described evolution of PAS granules. CONCLUSIONS: The present work reports the presence of two brain-related structures that, apart from PAS granules, contain neo-epitopes of carbohydrate nature, namely EP granules and IgM+ astrocytes. We suggest that EP granules, associated to fibroblasts, may be part of a physiological function in brain clearance or brain-CSF immune surveillance, while both PAS granules and IgM+ astrocytes may be related to the increasing accumulation of harmful materials that occurs with age and linked to brain protective mechanisms. Moreover, the specific localisation of these EP granules and IgM+ astrocytes suggest the importance of the fissura magna in these brain-related cleaning and immune functions. The overall results reinforce the possible link between the fissura magna and the functioning of the glymphatic system.

2.
Acta Neuropathol Commun ; 12(1): 97, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879502

RESUMEN

Wasteosomes (or corpora amylacea) are polyglucosan bodies that appear in the human brain with aging and in some neurodegenerative diseases, and have been suggested to have a potential role in a nervous system cleaning mechanism. Despite previous studies in several neurodegenerative disorders, their status in frontotemporal lobar degeneration (FTLD) remains unexplored. Our study aims to characterize wasteosomes in the three primary FTLD proteinopathies, assessing frequency, distribution, protein detection, and association with aging or disease duration. Wasteosome scores were obtained in various brain regions from 124 post-mortem diagnosed sporadic FTLD patients, including 75 participants with tau (FTLD-tau), 42 with TAR DNA-binding protein 43 (FTLD-TDP), and 7 with Fused in Sarcoma (FTLD-FUS) proteinopathies, along with 29 control subjects. The wasteosome amount in each brain region for the different FLTD patients was assessed with a permutation test with age at death and sex as covariables, and multiple regressions explored associations with age at death and disease duration. Double immunofluorescence studies examined altered proteins linked to FTLD in wasteosomes. FTLD patients showed a higher accumulation of wasteosomes than control subjects, especially those with FTLD-FUS. Unlike FTLD-TDP and control subjects, wasteosome accumulation did not increase with age in FTLD-tau and FTLD-FUS. Cases with shorter disease duration in FTLD-tau and FTLD-FUS seemed to exhibit higher wasteosome quantities, whereas FTLD-TDP appeared to show an increase with disease progression. Immunofluorescence studies revealed the presence of tau and phosphorylated-TDP-43 in the periphery of isolated wasteosomes in some patients with FTLD-tau and FTLD-TDP, respectively. Central inclusions of FUS were observed in a higher number of wasteosomes in FTLD-FUS patients. These findings suggest a role of wasteosomes in FTLD, especially in the more aggressive forms of FLTD-FUS. Detecting these proteins, particularly FUS, in wasteosomes from cerebrospinal fluid could be a potential biomarker for FTLD.


Asunto(s)
Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Proteína FUS de Unión a ARN , Proteínas tau , Humanos , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/metabolismo , Femenino , Masculino , Proteína FUS de Unión a ARN/metabolismo , Anciano , Proteínas tau/metabolismo , Persona de Mediana Edad , Anciano de 80 o más Años , Proteínas de Unión al ADN/metabolismo , Encéfalo/patología , Encéfalo/metabolismo
3.
Brain Struct Funct ; 228(6): 1371-1378, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37358661

RESUMEN

The first report of corpora amylacea (CA) is attributed to Morgagni, who described them in the prostate in the eighteenth century. Nearly a hundred years later, and following the lead started by Purkinje, Virchow described them in the brain. He made a detailed description of the most useful techniques to visualize them, but he failed to describe the cause of why CA do appear, why they are mainly linked with the elderly, and which is their clinical significance. Although in the last two centuries CA have received little attention, recent data have been able to describe that CA accumulate waste products and that some of them can be found in the cerebrospinal fluid and lymphatic nodes, after being released from the brain. Indeed, CA have been renamed to wasteosomes to underline the waste products they gather and to avoid confusion with the term amyloid used by Virchow, now widely related to certain protein deposits found in the brain. Here, after providing a commented English translation of Virchow's findings, we provide a recent update on these structures and their connection with the glymphatic system insufficiency, for which wasteosomes should be considered a hallmark, and how these bodies could serve as diagnostic or prognostic markers of various brain conditions.


Asunto(s)
Encefalopatías , Encéfalo , Masculino , Humanos , Anciano , Amiloide , Residuos
4.
Front Aging Neurosci ; 15: 1110425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065464

RESUMEN

Brain corpora amylacea, recently renamed as wasteosomes, are polyglucosan bodies that appear during aging and some neurodegenerative conditions. They collect waste substances and are part of a brain cleaning mechanism. For decades, studies on their composition have produced inconsistent results and the presence of tau protein in them has been controversial. In this work, we reanalyzed the presence of this protein in wasteosomes and we pointed out a methodological problem when immunolabeling. It is well known that to detect tau it is necessary to perform an antigen retrieval. However, in the case of wasteosomes, an excessive antigen retrieval with boiling dissolves their polyglucosan structure, releases the entrapped proteins and, thus, prevents their detection. After performing an adequate pre-treatment, with an intermediate time of boiling, we observed that some brain wasteosomes from patients with Alzheimer's disease (AD) contained tau, while we did not detect tau protein in those from non-AD patients. These observations pointed the different composition of wasteosomes depending on the neuropathological condition and reinforce the role of wasteosomes as waste containers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA