Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687390

RESUMEN

Rice (Oryza sativa L.) is a very important cereal worldwide, since it is the staple food for more than half of the world's population. Iron (Fe) deficiency is among the most important agronomical concerns in calcareous soils where rice plants may suffer from this deficiency. Current production systems are based on the use of high-yielding varieties and the application of large quantities of agrochemicals, which can cause major environmental problems. The use of beneficial rhizosphere microorganisms is considered a relevant sustainable alternative to synthetic fertilizers. The main goal of this study was to determine the ability of the nonpathogenic strain Fusarium oxysporum FO12 to induce Fe-deficiency responses in rice plants and its effects on plant growth and Fe chlorosis. Experiments were carried out under hydroponic system conditions. Our results show that the root inoculation of rice plants with FO12 promotes the production of phytosiderophores and plant growth while reducing Fe chlorosis symptoms after several days of cultivation. Moreover, Fe-related genes are upregulated by FO12 at certain times in inoculated plants regardless of Fe conditions. This microorganism also colonizes root cortical tissues. In conclusion, FO12 enhances Fe-deficiency responses in rice plants, achieves growth promotion, and reduces Fe chlorosis symptoms.

2.
Planta ; 257(3): 50, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757472

RESUMEN

MAIN CONCLUSION: FO12 strain enhances Fe deficiency responses in cucumber plants, probably through the production of ethylene and NO in the subapical regions of the roots. Rhizosphere microorganisms can elicit induced systemic resistance (ISR) in plants. This type of resistance involves complex mechanisms that confer protection to the plant against pathogen attack. Additionally, it has been reported by several studies that ISR and Fe deficiency responses are modulated by common pathways, involving some phytohormones and signaling molecules, like ethylene and nitric oxide (NO). The aim of this study was to determine whether the nonpathogenic strain of Fusarium oxysporum FO12 can induce Fe deficiency responses in cucumber (Cucumis sativus L.) plants. Our results demonstrate that the root inoculation of cucumber plants with the FO12 strain promotes plant growth after several days of cultivation, as well as rhizosphere acidification and enhancement of ferric reductase activity. Moreover, Fe-related genes, such as FRO1, IRT1 and HA1, are upregulated at certain times after FO12 inoculation either upon Fe-deficiency or Fe-sufficient conditions. Furthermore, it has been found that this fungus colonizes root cortical tissues, promoting the upregulation of ethylene synthesis genes and NO production in the root subapical regions. To better understand the effects of the FO12 strain on field conditions, cucumber plants were inoculated and cultivated in a calcareous soil under greenhouse conditions. The results obtained show a modification of some physiological parameters in the inoculated plants, such as flowering and reduction of tissue necrosis. Overall, the results suggest that the FO12 strain could have a great potential as a Fe biofertilizer and biostimulant.


Asunto(s)
Cucumis sativus , Fusarium , Cucumis sativus/genética , Raíces de Plantas/metabolismo , Hierro/metabolismo , Etilenos/metabolismo
3.
Microorganisms ; 9(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34946203

RESUMEN

Iron (Fe) deficiency is a first-order agronomic problem that causes a significant decrease in crop yield and quality. Paradoxically, Fe is very abundant in most soils, mainly in its oxidized form, but is poorly soluble and with low availability for plants. In order to alleviate this situation, plants develop different morphological and physiological Fe-deficiency responses, mainly in their roots, to facilitate Fe mobilization and acquisition. Even so, Fe fertilizers, mainly Fe chelates, are widely used in modern agriculture, causing environmental problems and increasing the costs of production, due to the high prices of these products. One of the most sustainable and promising alternatives to the use of agrochemicals is the better management of the rhizosphere and the beneficial microbial communities presented there. The main objective of this research has been to evaluate the ability of several yeast species, such as Debaryomyces hansenii, Saccharomyces cerevisiae and Hansenula polymorpha, to induce Fe-deficiency responses in cucumber plants. To date, there are no studies on the roles played by yeasts on the Fe nutrition of plants. Experiments were carried out with cucumber plants grown in a hydroponic growth system. The effects of the three yeast species on some of the most important Fe-deficiency responses developed by dicot (Strategy I) plants, such as enhanced ferric reductase activity and Fe2+ transport, acidification of the rhizosphere, and proliferation of subapical root hairs, were evaluated. The results obtained show the inductive character of the three yeast species, mainly of Debaryomyces hansenii and Hansenula polymorpha, on the Fe-deficiency responses evaluated in this study. This opens a promising line of study on the use of these microorganisms as Fe biofertilizers in a more sustainable and environmentally friendly agriculture.

4.
Front Plant Sci ; 10: 1237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649701

RESUMEN

Iron (Fe) and phosphorus (P) are two essential mineral nutrients whose acquisition by plants presents important environmental and economic implications. Both elements are abundant in most soils but scarcely available to plants. To prevent Fe or P deficiency dicot plants initiate morphological and physiological responses in their roots aimed to specifically acquire these elements. The existence of common signals in Fe and P deficiency pathways suggests the signaling factors must act in conjunction with distinct nutrient-specific signals in order to confer tolerance to each deficiency. Previous works have shown the existence of cross talk between responses to Fe and P deficiency, but details of the associated signaling pathways remain unclear. Herein, the impact of foliar application of either P or Fe on P and Fe responses was studied in P- or Fe-deficient plants of Arabidopsis thaliana, including mutants exhibiting altered Fe or P homeostasis. Ferric reductase and acid phosphatase activities in roots were determined as well as the expression of genes related to P and Fe acquisition. The results obtained showed that Fe deficiency induces the expression of P acquisition genes and phosphatase activity, whereas P deficiency induces the expression of Fe acquisition genes and ferric reductase activity, although only transitorily. Importantly, these responses were reversed upon foliar application of either Fe or P on nutrient-starved plants. Taken together, the results reveal interactions between P- and Fe-related phloem signals originating in the shoots that likely interact with hormones in the roots to initiate adaptive mechanisms to tolerate deficiency of each nutrient.

5.
Front Plant Sci ; 10: 287, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915094

RESUMEN

Plants develop responses to abiotic stresses, like Fe deficiency. Similarly, plants also develop responses to cope with biotic stresses provoked by biological agents, like pathogens and insects. Some of these responses are limited to the infested damaged organ, but other responses systemically spread far from the infested organ and affect the whole plant. These latter responses include the Systemic Acquired Resistance (SAR) and the Induced Systemic Resistance (ISR). SAR is induced by pathogens and insects while ISR is mediated by beneficial microbes living in the rhizosphere, like bacteria and fungi. These root-associated mutualistic microbes, besides impacting on plant nutrition and growth, can further boost plant defenses, rendering the entire plant more resistant to pathogens and pests. In the last years, it has been found that ISR-eliciting microbes can induce both physiological and morphological responses to Fe deficiency in dicot plants. These results suggest that the regulation of both ISR and Fe deficiency responses overlap, at least partially. Indeed, several hormones and signaling molecules, like ethylene (ET), auxin, and nitric oxide (NO), and the transcription factor MYB72, emerged as key regulators of both processes. This convergence between ISR and Fe deficiency responses opens the way to the use of ISR-eliciting microbes as Fe biofertilizers as well as biopesticides. This review summarizes the progress in the understanding of the molecular overlap in the regulation of ISR and Fe deficiency responses in dicot plants. Root-associated mutualistic microbes, rhizobacteria and rhizofungi species, known for their ability to induce morphological and/or physiological responses to Fe deficiency in dicot plant species are also reviewed herein.

6.
Front Plant Sci ; 9: 1325, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254659

RESUMEN

Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed.

8.
Front Plant Sci ; 6: 1056, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26640474

RESUMEN

Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.

9.
Physiol Plant ; 150(1): 95-106, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23742320

RESUMEN

In a previous work, it was shown that bicarbonate (one of the most important factors causing Fe chlorosis in Strategy I plants) can limit the expression of several genes involved in Fe acquisition. Hypoxia is considered another important factor causing Fe chlorosis, mainly on calcareous soils. However, to date it is not known whether hypoxia aggravates Fe chlorosis by affecting bicarbonate concentration or by specific negative effects on Fe acquisition. Results found in this work show that hypoxia, generated by eliminating the aeration of the nutrient solution, can limit the expression of several Fe acquisition genes in Fe-deficient Arabidopsis, cucumber and pea plants, like the genes for ferric reductases AtFRO2, PsFRO1 and CsFRO1; iron transporters AtIRT1, PsRIT1 and CsIRT1; H(+) -ATPase CsHA1; and transcription factors AtFIT, AtbHLH38, and AtbHLH39. Interestingly, the limitation of the expression of Fe-acquisition genes by hypoxia did not occur in the Arabidopsis ethylene constitutive mutant ctr1, which suggests that the negative effect of hypoxia is related to ethylene, an hormone involved in the upregulation of Fe acquisition genes. As for hypoxia, results obtained by applying bicarbonate to the nutrient solution suggests that ethylene is also involved in its negative effect, since ACC (1-aminocyclopropane-1-carboxylic acid; ethylene precursor) partially reversed the negative effect of bicarbonate on the expression of Fe acquisition genes. Taken together, the results obtained show that hypoxia and bicarbonate could induce Fe chlorosis by limiting the expression of Fe acquisition genes, probably because each factor negatively affects different steps of ethylene synthesis and/or signaling.


Asunto(s)
Bicarbonatos/metabolismo , Etilenos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Oxígeno/fisiología , Arabidopsis , Cucumis sativus/genética , Pisum sativum/genética , Transducción de Señal/genética
10.
Planta ; 237(1): 65-75, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22983673

RESUMEN

Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Hierro/metabolismo , Raíces de Plantas/genética , Brotes de la Planta/genética , Plantas/genética , Aminoácidos Cíclicos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Transporte de Catión/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , FMN Reductasa/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hierro/farmacología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutación , Donantes de Óxido Nítrico/farmacología , Pisum sativum/genética , Pisum sativum/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , S-Nitrosoglutatión/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
11.
Plant Physiol Biochem ; 49(5): 537-44, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21316254

RESUMEN

In previous work it has been shown that both ethylene and NO (nitric oxide) participate in a similar way in the up-regulation of several Fe-acquisition genes of Arabidopsis and other Strategy I plants. This raises the question as to whether NO acts through ethylene or ethylene acts through NO, or whether both act in conjunction. One possibility is that NO could increase ethylene production. Conversely, ethylene could increase NO production. By using Arabidopsis and cucumber plants, we have found that both possibilities occur: NO greatly induces the expression in roots of genes involved in ethylene synthesis: AtSAM1, AtSAM2, AtACS4, AtACS6, AtACO1, AtACO2, AtMTK; CsACS2 and CsACO2; on the other hand, ethylene greatly enhances NO production in the subapical region of the roots. These results suggest that each substance influences the production of the other and that both substances could be necessary for up-regulation of Fe-acquisition genes. This has been further confirmed in experiments with simultaneous application of the NO donor GSNO (S-nitrosoglutathione) and ethylene inhibitors; or with simultaneous application of the ethylene precursor ACC (1-aminocyclopropane-1-carboxylic acid) and an NO scavenger. Both GSNO and ACC enhanced ferric reductase activity in control plants, but not in those plants simultaneously treated with the ethylene inhibitors or the NO scavenger, respectively. To explain all these results and previous ones we have proposed a new model involving ethylene, NO, and Fe in the up-regulation of Fe-acquisition genes of Strategy I plants.


Asunto(s)
Aminoácidos Cíclicos/farmacología , Arabidopsis/genética , Cucumis sativus/genética , Etilenos/metabolismo , Óxido Nítrico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Cucumis sativus/efectos de los fármacos , Cucumis sativus/enzimología , FMN Reductasa/análisis , FMN Reductasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Modelos Biológicos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , S-Nitrosoglutatión/farmacología , Regulación hacia Arriba
12.
Plant Signal Behav ; 6(1): 167-70, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21248474

RESUMEN

Under Fe deficiency, Strategy I (non-graminaceous) plants up-regulate the expression of many Fe acquisition genes and develop morphological changes in their roots. The regulation of these responses is not completely known, but since the 1980's different results suggest a role for auxin, ethylene and, more recently, nitric oxide. The up-regulation of the Fe acquisition genes does not depend solely on these hormones, that would act as activators, but also on some other signals, probably phloem Fe, that would act as an inhibitor. It is not known which of the hormones considered is the last activator of the Fe acquisition genes, but some results suggest that auxin acts upstream of ethylene and NO and that, perhaps, ethylene is the last activator.


Asunto(s)
Arabidopsis/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Deficiencias de Hierro , Óxido Nítrico/metabolismo , Arabidopsis/genética , Genes de Plantas/genética , Hierro/metabolismo , Modelos Biológicos , Raíces de Plantas/citología , Raíces de Plantas/metabolismo
13.
J Exp Bot ; 61(14): 3885-99, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20627899

RESUMEN

In a previous work it was shown that ethylene participates in the up-regulation of several Fe acquisition genes of Arabidopsis, such as AtFIT, AtFRO2, and AtIRT1. In this work the relationship between ethylene and Fe-related genes in Arabidopsis has been looked at in more depth. Genes induced by Fe deficiency regulated by ethylene were searched for. For this, studies were conducted, using microarray analysis and reverse transcription-PCR (RT-PCR), to determine which of the genes up-regulated by Fe deficiency are simultaneously suppressed by two different ethylene inhibitors (cobalt and silver thiosulphate), assessing their regulation by ethylene in additional experiments. In a complementary experiment, it was determined that the Fe-related genes up-regulated by ethylene were also responsive to nitric oxide (NO). Further studies were performed to analyse whether Fe deficiency up-regulates the expression of genes involved in ethylene biosynthesis [S-adenosylmethionine synthetase, 1-aminocyclopropane-1-carboxylate (ACC) synthase, and ACC oxidase genes] and signalling (AtETR1, AtCTR1, AtEIN2, AtEIN3, AtEIL1, and AtEIL3). The results obtained show that both ethylene and NO are involved in the up-regulation of many important Fe-regulated genes of Arabidopsis, such as AtFIT, AtbHLH38, AtbHLH39, AtFRO2, AtIRT1, AtNAS1, AtNAS2, AtFRD3, AtMYB72, and others. In addition, the results show that Fe deficiency up-regulates genes involved in both ethylene synthesis (AtSAM1, AtSAM2, AtACS4, AtACS6, AtACS9, AtACO1, and AtACO2) and signalling (AtETR1, AtCTR1, AtEIN2, AtEIN3, AtEIL1, and AtEIL3) in the roots.


Asunto(s)
Arabidopsis/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Óxido Nítrico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes de Plantas , Homeostasis/genética , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , S-Adenosilmetionina/genética , S-Adenosilmetionina/metabolismo , Activación Transcripcional , Regulación hacia Arriba
14.
J Agric Food Chem ; 56(22): 10774-8, 2008 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-18975970

RESUMEN

The FeEDDHA [iron(3+) ethylenediamine di(o-hydroxyphenylacetic) acid] is one of the most efficient iron chelates employed in the correction of iron clorosis in calcareous soils. FeEDDHA presents different positional isomers: the ortho-ortho (o,o), the ortho-para (o,p), and the para-para (p,p). Of these isomers, the p,p cannot chelate Fe in soil solution in a wide range of pH values, while both o,o and o,p can. The objective of this work was to compare the efficiency of both isomers (o,o and o,p) to provide Fe to two Strategy I plants (tomato and peach) in nutrient solution (pH approximately 6.0), as well as in calcareous soil (pH approximately 8.4; CALCIXEREPT). For this, chelates of both o,o-EDDHA and o,p-EDDHA with 57Fe (a nonradioactive isotope of Fe) were used, where the 57Fe acts as a tracer. The results obtained showed that the o,o isomer is capable of providing sufficient Fe to plants in both nutrient solution and calcareous soil. However, the o,p isomer is capable of providing sufficient Fe to plants in nutrient solution but not in calcareous soil.


Asunto(s)
Etilenodiaminas/administración & dosificación , Etilenodiaminas/química , Quelantes del Hierro/administración & dosificación , Hierro/administración & dosificación , Desarrollo de la Planta , Calcio/análisis , Concentración de Iones de Hidrógeno , Isomerismo , Suelo/análisis , Soluciones , Relación Estructura-Actividad
15.
Plant Physiol Biochem ; 45(5): 293-301, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17468001

RESUMEN

In previous works using ethylene inhibitors and precursors, it has been shown that ethylene participates in the regulation of several Fe deficiency stress responses by Strategy I plants, such as enhanced ferric reductase activity, rhizosphere acidification and subapical root hair development. Furthermore, recent evidence suggests that ethylene could regulate the expression of both the ferric reductase and the iron transporter genes of Strategy I plants by affecting the FER (or FER-like) transcription factor. Recently, two H(+)-ATPase genes have been isolated from cucumber roots, CsHA1 and CsHA2. CsHA1 is up-regulated under Fe deficiency while CsHA2 is constitutively expressed. In this work we have cloned and characterized the sequences of the ferric reductase (CsFRO1) and the iron transporter (CsIRT1) genes from cucumber (Cucumis sativus L. cv Ashley). Expression of CsHA1, CsFRO1 and CsIRT1 is diminished in Fe-deficient roots by treatment with ethylene inhibitors, like Co (cobalt) or AOA (aminooxyacetic acid). Treatment with ethylene precursors, like ACC (1-aminocyclopropane-1-carboxylic acid) or Ethephon (2-chloroethylphosphonic acid), resulted in increased CsHA1, CsFRO1 and CsIRT1 transcript levels and increased ferric reductase activity during early stages of Fe deficiency. These results suggest that ethylene is involved in the regulation of CsHA1, CsFRO1 and CsIRT1 gene expression.


Asunto(s)
Proteínas de Transporte de Catión/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , ATPasas de Translocación de Protón/genética , Secuencia de Aminoácidos , Clonación Molecular , FMN Reductasa/genética , Datos de Secuencia Molecular , Filogenia
16.
Funct Plant Biol ; 34(11): 1002-1009, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32689428

RESUMEN

Bicarbonate is considered one of the most important factors causing Fe chlorosis in Strategy I plants, mainly on calcareous soils. Most of its negative effects have been attributed to its capacity to buffer a high pH in soils, which can diminish both Fe solubility and root ferric reductase activity. Besides its pH-mediated effects, previous work has shown that bicarbonate can inhibit the induction of enhanced ferric reductase activity in Fe-deficient Strategy I plants. However, to date it is not known whether bicarbonate affects the upregulation of the ferric reductase gene and other genes involved in Fe acquisition. The objective of this work has been to study the effect of bicarbonate on the expression of several Fe acquisition genes in Arabidopsis (Arabidopsis thaliana L.), pea (Pisum sativum L.), tomato (Lycopersicon esculentum Mill.) and cucumber (Cucumis sativus L.) plants. Genes for ferric reductases AtFRO2, PsFRO1, LeFRO1 and CsFRO1; iron transporters AtITR1, PsRIT1, LeIRT1 and CsIRT1; H+-ATPases CsHA1 and CsHA2; and transcription factors AtFIT and LeFER have been examined. The results showed that bicarbonate could induce Fe chlorosis by inhibiting the expression of the ferric reductase, the iron transporter and the H+-ATPase genes, probably through alteration of the expression of Fe efficiency reactions (FER) (or FER-like) transcription factors.

17.
Funct Plant Biol ; 31(4): 315-328, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-32688902

RESUMEN

Plants have developed different mechanisms for the acquisition of iron (Fe). Depending on the mechanisms, plants are classified into two groups: Strategy I and Strategy II. Strategy I plants include all higher plants except the Gramineae, while Strategy II plants comprise the Gramineae. When plants suffer from Fe-deficiency, they develop several morphological and physiological changes in their roots, known as Fe-deficiency stress responses, which disappear when the plants acquire enough Fe. In Strategy I plants, these changes include subapical swelling with abundant root hairs, transfer cells, acidification of the rhizosphere, enhancement of the capacity to reduce Fe3+ to Fe2+, enhancement of the capacity for Fe2+ uptake, release of flavins, and others. The regulation of these responses is not fully understood but in recent years there has been evidence suggesting the involvement of ethylene in this process. This review summarises different results that support a role for this hormone in the regulation of Fe-deficiency stress responses by Strategy I plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...