Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 20(24): 245501, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19468162

RESUMEN

We report on experimental studies of NH3 adsorption/desorption on graphene surfaces. The study employs bottom-gated graphene field effect transistors supported on Si/SiO2 substrates. Detection of NH3 occurs through the shift of the source-drain resistance maximum ('Dirac peak') with the gate voltage. The observed shift of the Dirac peak toward negative gate voltages in response to NH3 exposure is consistent with a small charge transfer (f approximately 0.068 +/- 0.004 electrons per molecule at pristine sites) from NH3 to graphene. The desorption kinetics involves a very rapid loss of NH3 from the top surface and a much slower removal from the bottom surface at the interface with the SiO2 that we identify with a Fickian diffusion process.


Asunto(s)
Amoníaco/química , Electroquímica/instrumentación , Electroquímica/métodos , Grafito/química , Nanoestructuras/química , Transductores , Transistores Electrónicos , Adsorción , Amoníaco/análisis , Cristalización/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Tamaño de la Partícula , Propiedades de Superficie
2.
ACS Nano ; 2(10): 2037-44, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19206449

RESUMEN

Results are presented from an experimental and theoretical study of the electronic properties of back-gated graphene field effect transistors (FETs) on Si/SiO(2) substrates. The excess charge on the graphene was observed by sweeping the gate voltage to determine the charge neutrality point in the graphene. Devices exposed to laboratory environment for several days were always found to be initially p-type. After approximately 20 h at 200 degrees C in approximately 5 x 10(-7) Torr vacuum, the FET slowly evolved to n-type behavior with a final excess electron density on the graphene of approximately 4 x 10(12) e/cm(2). This value is in excellent agreement with our theoretical calculations on SiO(2), where we have used molecular dynamics to build the SiO(2) structure and then density functional theory to compute the electronic structure. The essential theoretical result is that the SiO(2) has a significant surface state density just below the conduction band edge that donates electrons to the graphene to balance the chemical potential at the interface. An electrostatic model for the FET is also presented that produces an expression for the gate bias dependence of the carrier density.


Asunto(s)
Diseño Asistido por Computadora , Grafito/química , Nanoestructuras/química , Nanotecnología/instrumentación , Dióxido de Silicio/química , Silicio/química , Transistores Electrónicos , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Tamaño de la Partícula , Propiedades de Superficie
3.
Phys Rev Lett ; 95(15): 156801, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16241748

RESUMEN

We report for the first time on rich and tunable transport phenomena in closed-packed arrays of PbSe colloidal nanocrystals (NCs) in the form of thin films. As the interdot coupling is increased, the system evolves from an insulating regime dominated by Coulomb blockade to a semiconducting regime, where hopping conduction is the dominant transport mechanism. The observed phenomena can be interpreted using the framework established mainly in the context of transport measurements in metallic quantum dots and disordered semiconductors.

4.
Science ; 307(5706): 89-93, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15637273

RESUMEN

We report the observation of unusually strong and systematic changes in the electron transport in metallic single-walled carbon nanotubes that are undergoing collisions with inert gas atoms or small molecules. At fixed gas temperature and pressure, changes in the resistance and thermopower of thin films are observed that scale as roughly M(1/3), where M is the mass of the colliding gas species (He, Ar, Ne, Kr, Xe, CH4, and N2). Results of molecular dynamics simulations are also presented that show that the maximum deformation of the tube wall upon collision and the total energy transfer between the colliding atom and the nanotube also exhibit a roughly M(1/3) dependence. It appears that the transient deformation (or dent) in the tube wall may provide a previously unknown scattering mechanism needed to explain the atom collision-induced changes in the electrical transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA