Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Magn Reson ; 360: 107632, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382405

RESUMEN

Serial NMR experiments are commonly applied in variable-temperature studies, reaction monitoring, and other tasks. The resonance frequencies often shift linearly over the series, and the shift rates help to characterize the studied system. They can be determined using a classical fitting of peak positions or a more advanced method of Radon transform. However, the optimal procedure for data collection remains to be determined. In this paper, we discuss how to invest experimental time, i.e., whether to measure more scans at the expense of the number of spectra or vice versa. The results indicate that classical fitting provides slightly less error than the Radon transform, although the latter can be the method of choice for a low signal-to-noise ratio. We demonstrate this fact through theoretical consideration, simulations, and an experiment. Finally, we extend our considerations to the linear fitting of peak amplitudes. Interestingly, the optimal setup for measuring peak height changes differs from the one for resonance frequency changes - fewer spectra with more scans provide better results.

2.
J Phys Chem C Nanomater Interfaces ; 127(39): 19591-19598, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37817917

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is a key method for the determination of molecular structures. Due to its intrinsically high (i.e., atomistic) resolution and versatility, it has found numerous applications for investigating gases, liquids, and solids. However, liquid-state NMR has found little application for suspensions of solid particles as the resonances of such systems are excessively broadened, typically beyond the detection threshold. Herein, we propose a route to overcoming this critical limitation by enhancing the signals of particle suspensions by >3.000-fold using dissolution dynamic nuclear polarization (d-DNP) coupled with rapid solid precipitation. For the proof-of-concept series of experiments, we employed calcium phosphate (CaP) as a model system. By d-DNP, we boosted the signals of phosphate 31P spins before rapid CaP precipitation inside the NMR spectrometer, leading to the inclusion of the hyperpolarized phosphate into CaP-nucleated solid particles within milliseconds. With our approach, within only 1 s of acquisition time, we obtained spectra of biphasic systems, i.e., micrometer-sized dilute solid CaP particles coexisting with their solution-state precursors. Thus, this work is a step toward real-time characterization of the solid-solution equilibrium. Finally, integrating the hyperpolarized data with molecular dynamics simulations and electron microscopy enabled us to shed light on the CaP formation mechanism in atomistic detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA