Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(6): 064114, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36792502

RESUMEN

Recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys. 151, 214108 (2019)] is a one-electron self-interaction-correction (SIC) method that uses an iso-orbital indicator to apply the SIC at each point in space by scaling the exchange-correlation and Coulomb energy densities. The LSIC method is exact for the one-electron densities, also recovers the uniform electron gas limit of the uncorrected density functional approximation, and reduces to the well-known Perdew-Zunger SIC (PZSIC) method as a special case. This article presents the self-consistent implementation of the LSIC method using the ratio of Weizsäcker and Kohn-Sham kinetic energy densities as an iso-orbital indicator. The atomic forces as well as the forces on the Fermi-Löwdin orbitals are also implemented for the LSIC energy functional. Results show that LSIC with the simplest local spin density functional predicts atomization energies of the AE6 dataset better than some of the most widely used generalized-gradient-approximation (GGA) functional [e.g., Perdew-Burke-Ernzerhof (PBE)] and barrier heights of the BH6 database better than some of the most widely used hybrid functionals (e.g., PBE0 and B3LYP). The LSIC method [a mean absolute error (MAE) of 0.008 Å] predicts bond lengths of a small set of molecules better than the PZSIC-LSDA (MAE 0.042 Å) and LSDA (0.011 Å). This work shows that accurate results can be obtained from the simplest density functional by removing the self-interaction-errors using an appropriately designed SIC method.

2.
J Chem Phys ; 158(5): 054305, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754787

RESUMEN

Accurate prediction of a spin-state energy difference is crucial for understanding the spin crossover phenomena and is very challenging for density functional approximations, especially for local and semi-local approximations due to delocalization errors. Here, we investigate the effect of the self-interaction error removal from the local spin density approximation (LSDA) and Perdew-Burke-Ernzerhof generalized gradient approximation on the spin-state gaps of Fe(II) complexes with various ligands using recently developed locally scaled self-interaction correction (LSIC) by Zope et al. [J. Chem. Phys. 151, 214108 (2019)]. The LSIC method is exact for one-electron density, recovers the uniform electron gas limit of the underlying functional, and approaches the well-known Perdew-Zunger self-interaction correction (PZSIC) as a particular case when the scaling factor is set to unity. Our results, when compared with reference diffusion Monte Carlo results, show that the PZSIC method significantly overestimates spin-state gaps favoring low spin states for all ligands and does not improve upon density functional approximations. The perturbative LSIC-LSDA using PZSIC densities significantly improves the gaps with a mean absolute error of 0.51 eV but slightly overcorrects for the stronger CO ligands. The quasi-self-consistent LSIC-LSDA, such as coupled-cluster single double and perturbative triple [CCSD(T)], gives a correct sign of spin-state gaps for all ligands with a mean absolute error of 0.56 eV, comparable to that of CCSD(T) (0.49 eV).

3.
Phys Chem Chem Phys ; 23(3): 2406-2418, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33459302

RESUMEN

A recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys., 2019, 151, 214108] when applied to the simplest local density approximation provides a significant improvement over standard Perdew-Zunger SIC (PZSIC) for both equilibrium properties such as total or atomization energies as well as properties involving stretched bond such as barrier heights. The method uses an iso-orbital indicator to identify the single-electron regions. To demonstrate the LSIC method, Zope et al. used the ratio zσ of von Weizsäcker τWσ and total kinetic energy densities τσ, (zσ = τWσ/τσ) as a scaling factor to scale the self-interaction correction. The present work further explores the LSIC method using a ratio of orbital and spin densities as a simpler scaling factor in place of the ratio of kinetic energy densities. We compute a wide array of both, equilibrium and non-equilibrium properties using LSIC and orbital scaling methods using this simple scaling factor and compare them with previously reported results. Our study shows that LSIC with the simple scaling factor performs better than PZSIC, with results comparable to those obtained by LSIC(zσ) for most properties, but has slightly larger errors than LSIC(zσ). Furthermore, we study the binding energies of small water clusters using both scaling factors. Our results show that LSIC with zσ has limitations in predicting the cluster binding energies of weakly bonded systems due to the inability of zσ to distinguish weakly bonded regions from slowly varying density regions. LSIC when used with the density ratio as a scaling factor, on the other hand, provides a good description of water cluster binding energies, thus highlighting the appropriate choice of the iso-orbital indicator.

4.
J Chem Phys ; 152(21): 214109, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505149

RESUMEN

The Perdew-Zunger (PZ) self-interaction correction (SIC) was designed to correct the one-electron limit of any approximate density functional for the exchange-correlation (xc) energy, while yielding no correction to the exact functional. Unfortunately, it spoils the slowly varying (in space) limits of the uncorrected approximate functionals, where those functionals are right by construction. The right limits can be restored by locally scaling down the energy density of the PZ SIC in many-electron regions, but then a spurious correction to the exact functional would be found unless the self-Hartree and exact self-xc terms of the PZ SIC energy density were expressed in the same gauge. Only the local density approximation satisfies the same-gauge condition for the energy density, which explains why the recent local-scaling SIC is found here to work excellently for atoms and molecules only with this basic approximation and not with the more advanced generalized gradient approximations (GGAs) and meta-GGAs, which lose the Hartree gauge via simplifying integrations by parts. The transformation of energy density that achieves the Hartree gauge for the exact xc functional can also be applied to approximate functionals. Doing so leads to a simple scaled-down self-interaction correction that is typically much more accurate than PZ SIC in tests for many molecular properties (including equilibrium bond lengths). The present work unambiguously shows that the largest errors of PZ SIC applied to standard functionals at three levels of approximation can be removed by restoring their correct slowly varying density limits. It also confirms the relevance of these limits to atoms and molecules.

5.
J Chem Phys ; 152(17): 174112, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32384855

RESUMEN

The Perdew-Zunger (PZ) method provides a way to remove the self-interaction (SI) error from density functional approximations on an orbital by orbital basis. The PZ method provides significant improvements for the properties such as barrier heights or dissociation energies but results in over-correcting the properties well described by SI-uncorrected semi-local functional. One cure to rectify the over-correcting tendency is to scale down the magnitude of SI-correction of each orbital in the many-electron region. We have implemented the orbitalwise scaled down SI-correction (OSIC) scheme of Vydrov et al. [J. Chem. Phys. 124, 094108 (2006)] using the Fermi-Löwdin SI-correction method. After validating the OSIC implementation with previously reported OSIC-LSDA results, we examine its performance with the most successful non-empirical SCAN meta-GGA functional. Using different forms of scaling factors to identify one-electron regions, we assess the performance of OSIC-SCAN for a wide range of properties: total energies, ionization potentials and electron affinities for atoms, atomization energies, dissociation and reaction energies, and reaction barrier heights of molecules. Our results show that OSIC-SCAN provides superior results than the previously reported OSIC-LSDA, -PBE, and -TPSS results. Furthermore, we propose selective scaling of OSIC (SOSIC) to remove its major shortcoming that destroys the -1/r asymptotic behavior of the potentials. The SOSIC method gives the highest occupied orbital eigenvalues practically identical to those in PZSIC and unlike OSIC provides bound atomic anions even with larger powers of scaling factors. SOSIC compared to PZSIC or OSIC provides a more balanced description of total energies and barrier heights.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...