Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmacogenomics J ; 7(2): 123-32, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16733521

RESUMEN

Many bipolar affective disorder (BD) susceptibility loci have been identified but the molecular mechanisms responsible for the disease remain to be elucidated. In the locus 4p16, several candidate genes were identified but none of them was definitively shown to be associated with BD. In this region, the PPP2R2C gene encodes the Bgamma-regulatory subunit of the protein phosphatase 2A (PP2A-Bgamma). First, we identified, in two different populations, single nucleotide polymorphisms and risk haplotypes for this gene that are associated to BD. Then, we used the Bgamma subunit as bait to screen a human brain cDNA library with the yeast two-hybrid technique. This led us to two new splice variants of KCNQ2 channels and to the KCNQ2 channel itself. This unusual K+ channel has particularly interesting functional properties and belongs to a channel family that is already known to be implicated in several other monogenic diseases. In one of the BD populations, we also found a genetic association between the KCNQ2 gene and BD. We show that KCNQ2 splice variants differ from native channels by their shortened C-terminal sequences and are unique as they are active and exert a dominant-negative effect on KCNQ2 wild-type (wt) channel activity. We also show that the PP2A-Bgamma subunit significantly increases the current generated by KCNQ2wt, a channel normally inhibited by phosphorylation. The kinase glycogen synthase kinase 3 beta (GSK3beta) is considered as an interesting target of lithium, the classical drug used in BD. GSK3beta phosphorylates the KCNQ2 channel and this phosphorylation is decreased by Li+.


Asunto(s)
Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Tálamo/metabolismo , Animales , Antimaníacos/farmacología , Argentina , Células COS , Estudios de Casos y Controles , Chlorocebus aethiops , Inhibidores Enzimáticos/farmacología , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Haplotipos , Humanos , Desequilibrio de Ligamiento , Cloruro de Litio/farmacología , Potenciales de la Membrana , Oportunidad Relativa , Fosforilación , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Fosfatasa 2 , Medición de Riesgo , Factores de Riesgo , Tálamo/efectos de los fármacos , Transfección , Reino Unido
2.
EMBO J ; 23(13): 2684-95, 2004 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-15175651

RESUMEN

TREK-1 is a two-pore-domain background potassium channel expressed throughout the central nervous system. It is opened by polyunsaturated fatty acids and lysophospholipids. It is inhibited by neurotransmitters that produce an increase in intracellular cAMP and by those that activate the Gq protein pathway. TREK-1 is also activated by volatile anesthetics and has been suggested to be an important target in the action of these drugs. Using mice with a disrupted TREK-1 gene, we now show that TREK-1 has an important role in neuroprotection against epilepsy and brain and spinal chord ischemia. Trek1-/- mice display an increased sensitivity to ischemia and epilepsy. Neuroprotection by polyunsaturated fatty acids, which is impressive in Trek1+/+ mice, disappears in Trek1-/- mice indicating a central role of TREK-1 in this process. Trek1-/- mice are also resistant to anesthesia by volatile anesthetics. TREK-1 emerges as a potential innovative target for developing new therapeutic agents for neurology and anesthesiology.


Asunto(s)
Anestesia General , Anestésicos Generales/metabolismo , Fármacos Neuroprotectores/farmacología , Canales de Potasio de Dominio Poro en Tándem/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Isquemia Encefálica/prevención & control , Células COS , Chlorocebus aethiops , AMP Cíclico/metabolismo , Epilepsia/prevención & control , Ácidos Grasos Insaturados/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Eliminación de Gen , Expresión Génica , Heterocigoto , Homocigoto , Inmunohistoquímica , Precondicionamiento Isquémico/métodos , Lisofosfolípidos/farmacología , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Canales de Potasio , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Isquemia de la Médula Espinal/prevención & control
3.
Circ Res ; 89(4): 336-42, 2001 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-11509450

RESUMEN

Many members of the two-pore-domain potassium (K(+)) channel family have been detected in the mammalian heart but the endogenous correlates of these channels still have to be identified. We investigated whether I(KAA), a background K(+) current activated by negative pressure (stretch) and by arachidonic acid (AA) and sensitive to intracellular acidification, could be the native correlate of TREK-1 in adult rat atrial cells. Using the inside-out configuration of the patch-clamp technique, we found that I(KAA), like TREK-1, was outwardly rectifying in physiological K(+) conditions, with a conductance of 41 pS at +50 mV. Like TREK-1, I(KAA) was reversibly activated by clinical concentrations of volatile anesthetics (in mmol/L, chloroform 0.18, halothane 0.11, and isoflurane 0.69). In cell-attached experiments, I(KAA) was inhibited by chlorophenylthio-cAMP (500 micromol/L) and also by stimulation of beta-adrenergic receptors with isoproterenol (1 micromol/L). In addition, TREK-1 mRNAs were detected in all cardiac tissues, and the TREK-1 protein was immunolocalized in isolated atrial myocytes. Such a background potassium channel might contribute to the positive inotropic effects produced by beta-adrenergic stimulation of the heart. It might also be involved in the regulation of the atrial natriuretic peptide secretion.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Anestésicos por Inhalación/farmacología , Atrios Cardíacos/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/efectos de los fármacos , Animales , Ácido Araquidónico/farmacología , Separación Celular , Cloroformo/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Halotano/farmacología , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Isoflurano/farmacología , Isoproterenol/farmacología , Masculino , Miocardio/citología , Miocardio/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Ratas , Ratas Wistar , Estimulación Química
4.
Biochem Biophys Res Commun ; 282(1): 249-56, 2001 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-11263999

RESUMEN

We isolated three novel 2P domain K(+) channel subunits from human. The first two subunits, TALK-1 and TALK-2, are distantly related to TASK-2. Their genes form a tight cluster of 25 kb on chromosome 6p21.1-p21.2. The corresponding channels produce quasi-instantaneous and non-inactivating currents that are activated at alkaline pHs. These currents are sensitive to Ba(2+), quinine, quinidine, chloroform, halothane, and isoflurane but are not affected by TEA, 4-AP, Cs(+), arachidonic acid, hypertonic solutions, agents activating protein kinases C and A, changes of internal Ca(2+) concentrations, and by activation of G(i) and G(q) proteins. TALK-1 is exclusively expressed in the pancreas. TALK-2 is mainly expressed in the pancreas, but is also expressed at a lower level in liver, placenta, heart, and lung. We also cloned a third subunit, named hTHIK-2 which is present in many tissues with high levels again in the pancreas but which could not be functionally expressed.


Asunto(s)
Páncreas/metabolismo , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Clonación Molecular , Cartilla de ADN , Humanos , Datos de Secuencia Molecular , Canales de Potasio/química , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Homología de Secuencia de Aminoácido , Xenopus
5.
Br J Pharmacol ; 131(3): 569-77, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11015309

RESUMEN

Acetylcholine (ACh) is an important neuromodulator of cardiac function that is released upon stimulation of the vagus nerve. Despite numerous reports on activation of I(KACh) by acetylcholine in cardiomyocytes, it has yet to be demonstrated what role this channel plays in cardiac conduction. We studied the effect of tertiapin, a bee venom peptide blocking I(KACh), to evaluate the role of I(KACh) in Langendorff preparations challenged with ACh. ACh (0.5 microM) reproducibly and reversibly induced complete atrioventricular (AV) blocks in retroperfused guinea-pig isolated hearts (n=12). Tertiapin (10 to 300 nM) dose-dependently and reversibly prevented the AV conduction decrements and the complete blocks in unpaced hearts (n=8, P<0.01). Tertiapin dose-dependently blunted the ACh-induced negative chronotropic response from an ACh-induced decrease in heart rate of 39+/-16% in control conditions to 3+/-3% after 300 nM tertiapin (P=0.01). These effects were not accompanied by any significant change in QT intervals. Tertiapin blocked I(KACh) with an IC(50) of 30+/-4 nM with no significant effect on the major currents classically associated with cardiac repolarisation process (I(Kr), I(Ks), I(to1), I:(sus), I(K1) or I(KATP)) or AV conduction (I(Na) and I(Ca(L))). In summary, tertiapin prevents dose-dependently ACh-induced AV blocks in mammalian hearts by inhibiting I(KACh).


Asunto(s)
Acetilcolina/farmacología , Venenos de Abeja/farmacología , Bloqueo Cardíaco/inducido químicamente , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Animales , Nodo Atrioventricular/efectos de los fármacos , Nodo Atrioventricular/fisiología , Interacciones Farmacológicas , Electrocardiografía/efectos de los fármacos , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Cobayas , Corazón/efectos de los fármacos , Corazón/fisiología , Bloqueo Cardíaco/fisiopatología , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Oocitos , Bloqueadores de los Canales de Potasio , Conejos , Xenopus laevis
6.
J Biol Chem ; 275(37): 28398-405, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10880510

RESUMEN

Mechano-sensitive and fatty acid-activated K(+) belong to the structural class of K(+) channel with two pore domains. Here, we report the isolation and the characterization of a novel member of this family. This channel, called TREK2, is closely related to TREK1 (78% of homology). Its gene is located on chromosome 14q31. TREK2 is abundantly expressed in pancreas and kidney and to a lower level in brain, testis, colon, and small intestine. In the central nervous system, TREK2 has a widespread distribution with the highest levels of expression in cerebellum, occipital lobe, putamen, and thalamus. In transfected cells, TREK2 produces rapidly activating and non-inactivating outward rectifier K(+) currents. The single-channel conductance is 100 picosiemens at +40 mV in 150 mm K(+). The currents can be strongly stimulated by polyunsaturated fatty acid such as arachidonic, docosahexaenoic, and linoleic acids and by lysophosphatidylcholine. The channel is also activated by acidification of the intracellular medium. TREK2 is blocked by application of intracellular cAMP. As with TREK1, TREK2 is activated by the volatile general anesthetics chloroform, halothane, and isoflurane and by the neuroprotective agent riluzole. TREK2 can be positively or negatively regulated by a variety of neurotransmitter receptors. Stimulation of the G(s)-coupled receptor 5HT4sR or the G(q)-coupled receptor mGluR1 inhibits channel activity, whereas activation of the G(i)-coupled receptor mGluR2 increases TREK2 currents. These multiple types of regulations suggest that TREK2 plays an important role as a target of neurotransmitter action.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Proteínas de Unión al GTP/fisiología , Lisofosfolípidos/farmacología , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/fisiología , Receptores de Neurotransmisores/fisiología , Secuencia de Aminoácidos , Mapeo Cromosómico , Clonación Molecular , AMP Cíclico/fisiología , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética
7.
Therapie ; 55(1): 195-202, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10860024

RESUMEN

Cloned HERG and KvLQT1-IsK K+ channels have been expressed in mammalian cells and assayed as a target for calcium channel blockers. These channels generate the rapid and slow components of the cardiac delayed rectifier K+ current, and mutations can affect them that lead to long QT syndromes. HERG is blocked by bepridil (EC50 = 0.55 microM), verapamil (EC50 = 0.83 microM) and mibefradil (EC50 = 1.43 microM), whereas nitrendipine and diltiazem have negligible effects. Steady-state activation and inactivation parameters are shifted to more negative values in the presence of the blockers. Similarly, KvLQT1-IsK is inhibited by bepridil (EC50 = 10.0 microM) and mibefradil (EC50 = 11.8 microM), whilst being insensitive to nitrendipine, diltiazem or verapamil. This work may help to understand the mechanisms of action of verapamil in certain ventricular tachycardias as well as some of the deleterious adverse cardiac events associated with bepridil and mibefradil.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Proteínas de Transporte de Catión , Corazón/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/efectos de los fármacos , Animales , Células COS , Clonación Molecular , Canales de Potasio Éter-A-Go-Go , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Técnicas de Placa-Clamp , Canales de Potasio/genética
8.
EMBO J ; 19(8): 1784-93, 2000 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-10775263

RESUMEN

Results reported in this work suggest a potential therapeutic value of polyunsaturated fatty acids for cerebral pathologies as previously proposed by others for cardiac diseases. We show that the polyunsaturated fatty acid linolenic acid prevents neuronal death in an animal model of transient global ischemia even when administered after the insult. Linolenic acid also protects animals treated with kainate against seizures and hippocampal lesions. The same effects have been observed in an in vitro model of seizure-like activity using glutamatergic neurons and they have been shown to be associated with blockade of glutamatergic transmission by low concentrations of distinct polyunsaturated fatty acids. Our data suggest that the opening of background K(+) channels, like TREK-1 and TRAAK, which are activated by arachidonic acid and other polyunsaturated fatty acids such as docosahexaenoic acid and linolenic acid, is a significant factor in this neuroprotective effect. These channels are abundant in the brain where they are located both pre- and post-synaptically, and are insensitive to saturated fatty acids, which offer no neuroprotection.


Asunto(s)
Isquemia Encefálica/prevención & control , Ácidos Grasos Insaturados/farmacología , Neuronas/efectos de los fármacos , Canales de Potasio , Convulsiones/prevención & control , Animales , Isquemia Encefálica/patología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Ácidos Grasos Insaturados/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Etiquetado Corte-Fin in Situ , Ácido Kaínico , Magnesio/metabolismo , Ratones , Ratones Endogámicos BALB C , Neuronas/metabolismo , Ácido Palmítico/farmacología , Canales de Potasio/metabolismo , Convulsiones/inducido químicamente , Convulsiones/patología , Sinapsinas/metabolismo , Factores de Tiempo , Ácido alfa-Linolénico/farmacología
9.
Mol Pharmacol ; 57(5): 906-12, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10779373

RESUMEN

Riluzole (RP 54274) is a potent neuroprotective agent with anticonvulsant, sedative, and anti-ischemic properties. It is currently used in the treatment of amyotrophic lateral sclerosis. This article reports that riluzole is an activator of TREK-1 and TRAAK, two important members of a new structural family of mammalian background K(+) channels with four transmembrane domains and two pore regions. Whereas riluzole activation of TRAAK is sustained, activation of TREK-1 is transient and is followed by an inhibition. The inhibitory process is attributable to an increase of the intracellular cAMP concentration by riluzole that produces a protein kinase A-dependent inhibition of TREK-1. Mutants of TREK-1 lacking the Ser residue where the kinase A phosphorylation takes place are activated in a sustained manner by riluzole. TRAAK is permanently activated by riluzole because, unlike TREK-1, it lacks the negative regulation by cAMP.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/metabolismo , Riluzol/farmacología , Animales , Células COS , AMP Cíclico/metabolismo , Canales de Potasio/química , Canales de Potasio/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Transfección
10.
Cardiovasc Res ; 45(4): 971-80, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10728423

RESUMEN

OBJECTIVES: We report the functional expression of four KCNQ1 mutations affecting arginine residues and resulting in Romano-Ward (RW) and the Jervell and Lange-Nielsen (JLN) congenital long QT syndromes. RESULTS: The R539W and R190Q mutations were found in typical RW families with an autosomal dominant transmission. The R243H mutation was found in a compound heterozygous JLN patient who presents with deafness and cardiac symptoms. The fourth mutation, R533W, was a new case of recessive form of the RW syndrome since homozygous carriers experienced syncopes but showed no deafness, whereas the heterozygous carriers were asymptomatic. The R190Q mutation failed to produce functional homomeric channels. The R243H, R533W and R539W mutations induced a positive voltage shift of the channel activation but only when co-expressed with IsK, pointing out the critical role of these positively charged residues in the modulation of the gating properties of KvLQT1 by IsK. The positive shift induced by R533W was merely 15%. This small effect was compatible with the recessive character of the RW phenotype transmission. The average QTc was significantly longer (P < 0.01) in patients carrying mutations inducing a total loss of channel function and those patients were also prone to cardiac adverse symptoms (whether syncopes or sudden death) to a greater extent (62 vs. 21%, P < 0.001). CONCLUSIONS: Novel mutations are described that induce a voltage shift of the channel activation only in the presence of IsK. They appear associated with a milder cardiac phenotype.


Asunto(s)
Activación del Canal Iónico , Síndrome de QT Prolongado/genética , Mutación Missense , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/genética , Potenciales de Acción/genética , Adolescente , Adulto , Animales , Células COS , Niño , Preescolar , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Síndrome de QT Prolongado/metabolismo , Masculino , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Linaje , Fenotipo , Polimorfismo Conformacional Retorcido-Simple , Canales de Potasio/metabolismo
11.
Nat Neurosci ; 2(5): 422-6, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10321245

RESUMEN

Volatile anesthetics produce safe, reversible unconsciousness, amnesia and analgesia via hyperpolarization of mammalian neurons. In molluscan pacemaker neurons, they activate an inhibitory synaptic K+ current (IKAn), proposed to be important in general anesthesia. Here we show that TASK and TREK-1, two recently cloned mammalian two-P-domain K+ channels similar to IKAn in biophysical properties, are activated by volatile general anesthetics. Chloroform, diethyl ether, halothane and isoflurane activated TREK-1, whereas only halothane and isoflurane activated TASK. Carboxy (C)-terminal regions were critical for anesthetic activation in both channels. Thus both TREK-1 and TASK are possibly important target sites for these agents.


Asunto(s)
Anestésicos por Inhalación/farmacología , Neuronas/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/efectos de los fármacos , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Animales , Células COS , Lymnaea , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso , Técnicas de Placa-Clamp , Porosidad , Homología de Secuencia de Aminoácido
12.
J Biol Chem ; 274(17): 11751-60, 1999 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-10206991

RESUMEN

Mouse KCNK6 is a new subunit belonging to the TWIK channel family. This 335-amino acid polypeptide has four transmembrane segments, two pore-forming domains, and a Ca2+-binding EF-hand motif. Expression of KCNK6 transcripts is principally observed in eyes, lung, stomach and embryo. In the eyes, immunohistochemistry reveals protein expression only in some of the retina neurons. Although KCNK6 is able to dimerize as other functional two-P domain K+ channels when it is expressed in COS-7 cells, it remains in the endoplasmic reticulum and is unable to generate ionic channel activity. Deletions, mutations, and chimera constructions suggest that KCNK6 is not an intracellular channel but rather a subunit that needs to associate with a partner, which remains to be discovered, in order to reach the plasma membrane. A closely related human KCNK7-A subunit has been cloned. KCNK7 displays an intriguing GLE sequence in its filter region instead of the G(Y/F/L)G sequence, which is considered to be the K+ channel signature. This subunit is alternatively spliced and gives rise to the shorter forms KCNK7-B and -C. None of the KCNK7 structures can generate channel activity by itself. The KCNK7 gene is situated on chromosome 11, in the q13 region, where several candidate diseases have been identified.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Mapeo Cromosómico , Cromosomas Humanos Par 11 , Clonación Molecular , ADN Complementario , Humanos , Ratones , Datos de Secuencia Molecular , Canales de Potasio/química , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Xenopus
13.
Mol Pharmacol ; 54(4): 695-703, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9765513

RESUMEN

We examined the effects of the calcium channel blockers nitrendipine, diltiazem, verapamil, bepridil, and mibefradil on the cloned HERG and KvLQT1/IsK K+ channels. These channels generate the rapid and slow components of the cardiac delayed rectifier K+ current, and mutations can affect them, which leads to long QT syndromes. When expressed in transfected COS cells, HERG is blocked in a concentration-dependent manner by bepridil (EC50 = 0.55 microM), verapamil (EC50 = 0.83 microM), and mibefradil (EC50 = 1.43 microM), whereas nitrendipine and diltiazem have negligible effects. Steady state activation and inactivation parameters are shifted to more negative values in the presence of the blockers. Similarly, KvLQT1/IsK is inhibited by bepridil (EC50 = 10.0 microM) and mibefradil (EC50 = 11.8 microM), while being insensitive to nitrendipine, diltiazem, or verapamil. These results demonstrate that both cloned K+ channels HERG and KvLQT1/IsK, which represent together the cardiac delayed rectifier K+ current, are sensitive targets to calcium channel blockers. This work may help in understanding the mechanisms of action of verapamil in certain ventricular tachycardia, as well as some of the deleterious adverse cardiac events associated with bepridil.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Corazón/efectos de los fármacos , Corazón/fisiología , Síndrome de QT Prolongado/fisiopatología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/fisiología , Animales , Bencimidazoles/farmacología , Bepridil/farmacología , Células COS , Clonación Molecular , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Síndrome de QT Prolongado/tratamiento farmacológico , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mibefradil , Canales de Potasio/clasificación , Tetrahidronaftalenos/farmacología , Transfección , Verapamilo/farmacología
14.
Circ Res ; 83(1): 95-102, 1998 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-9670922

RESUMEN

The Jervell and Lange-Nielsen (JLN) syndrome affects the human cardioauditory system, associating a profound bilateral deafness with an abnormally long QT interval on the ECG. It results from mutations in KVLQT1 and ISK genes that encode the 2 subunits forming the K+ channel responsible for the cardiac and inner ear slowly activating component of the delayed rectifier K+ current (IKs). A JLN mouse model that presents typical inner ear defects has been created by knocking out the isk gene (isk-/-). This study specifically reports on the cardiac phenotype counterpart, determined in the whole animal and at mRNAs and cellular levels. Surface ECG recordings of isk-/- mice showed a longer QT interval at slow heart rates, a paradoxical shorter QT interval at fast heart rates, and an overall exacerbated QT-heart rate adaptation compared with wild-type (WT) mice. A 300-ms increase in the heart rate cycle length induces a 309+/-21% increase in the QT duration of the WT mice versus a 500+/-50% in isk-/- mice (P<0.001). It is concluded that the isk gene product and/or IKs, when present, blunts the QT adaptation to heart rate variations and that steeper QT-RR relationships reflect a greater susceptibility to arrhythmias in patients lacking IKs.


Asunto(s)
Frecuencia Cardíaca/fisiología , Síndrome de QT Prolongado/fisiopatología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/fisiología , Envejecimiento/fisiología , Animales , Northern Blotting , Cardiotónicos/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Conductividad Eléctrica , Electrocardiografía , Electrofisiología , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Isoproterenol/farmacología , Masculino , Ratones , Ratones Noqueados/genética , Miocardio/citología , Miocardio/metabolismo , Canales de Potasio/genética , Caracteres Sexuales
15.
Biophys J ; 74(6): 2850-61, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9635739

RESUMEN

Excitation and deexcitation are fundamental phenomena in the electrophysiology of excitable cells. Both of them can be induced by stimulating a cell with intracellularly injected currents. With extracellular stimulation, deexcitation was never observed; only cell excitation was found. Why? A generic model with two variables (FitzHugh) predicts that an extracellular stimulus can both excite the cell and terminate the action potential (AP). Our experiments with single mouse myocytes have shown that short (2-5 ms) extracellular pulses never terminated the AP. This result agrees with our numerical experiments with the Beeler-Reuter model. To analyze the problem, we exploit the separation of time scales to derive simplified models with fewer equations. Our analysis has shown that the very specific form of the current-voltage (I-V) characteristics of the time-independent potassium current (almost no dependence on voltage for positive membrane potentials) is responsible here. When the shape of the I-V characteristics of potassium currents was modified to resemble that in ischemic tissues, or when the external potassium concentration (K0) is increased, the AP was terminated by extracellular pulses. These results may be important for understanding the mechanisms of defibrillation.


Asunto(s)
Potenciales de Acción , Corazón/fisiología , Modelos Cardiovasculares , Animales , Animales Recién Nacidos , Células Cultivadas , Estimulación Eléctrica , Potenciales de la Membrana , Ratones , Miocardio/citología , Técnicas de Placa-Clamp
16.
EMBO J ; 16(17): 5472-9, 1997 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-9312006

RESUMEN

Mutations in the delayed rectifier K+ channel subunit KvLQT1 have been identified as responsible for both Romano-Ward (RW) and Jervell and Lange-Nielsen (JLN) inherited long QT syndromes. We report the molecular cloning of a human KvLQT1 isoform that is expressed in several human tissues including heart. Expression studies revealed that the association of KvLQT1 with another subunit, IsK, reconstitutes a channel responsible for the IKs current involved in ventricular myocyte repolarization. Six RW and two JLN mutated KvLQT1 subunits were produced and co-expressed with IsK in COS cells. All the mutants, except R555C, fail to produce functional homomeric channels and reduce the K+ current when co-expressed with the wild-type subunit. Thus, in both syndromes, the main effect of the mutations is a dominant-negative suppression of KvLQT1 function. The JLN mutations have a smaller dominant-negative effect, in agreement with the fact that the disease is recessive. The R555C subunit forms a functional channel when expressed with IsK, but with altered gating properties. The voltage dependence of the activation is strongly shifted to more positive values, and deactivation kinetics are accelerated. This finding indicates the functional importance of a small positively charged cytoplasmic region of the KvLQT structure where two RW and one JLN mutations have been found to take place.


Asunto(s)
Síndrome de QT Prolongado/genética , Mutación , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/genética , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Clonación Molecular , ADN Complementario/genética , Electrofisiología , Humanos , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fenotipo , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Distribución Tisular
17.
J Biol Chem ; 272(27): 16713-6, 1997 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-9201970

RESUMEN

The very slowly activating delayed rectifier K+ channel IKs is essential for controlling the repolarization phase of cardiac action potentials and K+ homeostasis in the inner ear. The IKs channel is formed via the assembly of two transmembrane proteins, KvLQT1 and MinK. Mutations in KvLQT1 are associated with a long QT syndrome that causes syncope and sudden death and also with deafness. Here, we show a new mode of association between ion channel forming subunits in that the cytoplasmic C-terminal end of MinK interacts directly with the pore region of KvLQT1. This interaction reduces KvLQT1 channel conductance from 7.6 to 0.58 picosiemens. However, because MinK also reveals a large number of previously silent KvLQT1 channels (x 60), the overall effect is a large increase (x 4) in the macroscopic K+ current. Conformational changes associated with the KvLQT1/MinK association create very slow and complex activation kinetics without much alteration in the deactivation process. Changes induced by MinK have an essential regulatory role in the development of this K+ channel activity upon repetitive electrical stimulation with a particular interest in tachycardia.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Potenciales de Acción , Animales , Células COS , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Cinética , Modelos Moleculares , Miocardio/metabolismo , Canales de Potasio/genética , Unión Proteica , Transfección
18.
J Immunol ; 159(12): 6209-15, 1997 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-9550424

RESUMEN

Human monocyte-derived macrophages possess a NADPH oxidase that catalyzes superoxide formation upon phagocytosis. Extracellular ATP per se does not activate NADPH oxidase but potentiates superoxide generation triggered by opsonized zymosan. UTP can substitute for ATP with the same efficiency, suggesting that ATP mediates its effects specifically through P2U receptors. Extracellular UTP stimulates a rapid increase in cytoplasmic Ca2+ concentration in monocytic cells, which results from a release of intracellular Ca2+ stores. Moreover, UTP-induced calcium increase is sufficient to activate a charybdotoxin-sensitive Ca2+-dependent outward K+ channel (K(Ca)). The activity of this channel develops between 0.1 and 1.0 microM free cytoplasmic Ca2+ concentration; it is half-blocked by 10 nM charybdotoxin but insensitive to iberiotoxin. Under asymmetrical K+ conditions, this K(Ca) channel does not depend on membrane potential and is characterized by a linear single-current voltage relationship in the voltage range of -100 to +50 mV, giving a unitary conductance of 10 pico-Siemens. Interestingly, ATP/UTP-induced oxygen radicals release was inhibited by charybdotoxin in the same range of concentration as the UTP-induced K(Ca) channel. Furthermore, we show that ATP or UTP fail to enhance oxygen radicals production before K(Ca) channel is expressed (3 days). The electrogenic nature of the NADPH oxidase, i.e., its level of activation, being dependent on the plasmic membrane potential, might provide the causal link between the reactive oxygen intermediates generation and the opening of the K(Ca) channel.


Asunto(s)
Adenosina Trifosfato/fisiología , Calcio/fisiología , Caribdotoxina/farmacología , Macrófagos/metabolismo , Canales de Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Uridina Trifosfato/fisiología , Antioxidantes/farmacología , Calcio/metabolismo , Diferenciación Celular , Células Cultivadas , Espacio Extracelular/fisiología , Humanos , Macrófagos/fisiología , Monocitos/metabolismo , Monocitos/fisiología , Proteínas Opsoninas , Bloqueadores de los Canales de Potasio , Canales de Potasio/biosíntesis , Zimosan/metabolismo , Zimosan/farmacología
19.
EMBO J ; 15(24): 6854-62, 1996 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-9003761

RESUMEN

Human TWIK-1, which has been cloned recently, is a new structural type of weak inward rectifier K+ channel. Here we report the structural and functional properties of TREK-1, a mammalian TWIK-1-related K+ channel. Despite a low amino acid identity between TWIK-1 and TREK-1 (approximately 28%), both channel proteins share the same overall structural arrangement consisting of two pore-forming domains and four transmembrane segments (TMS). This structural similarity does not give rise to a functional analogy. K+ currents generated by TWIK-1 are inwardly rectifying while K+ currents generated by TREK-1 are outwardly rectifying. These channels have a conductance of 14 pS. TREK-1 currents are insensitive to pharmacological agents that block TWIK-1 activity such as quinine and quinidine. Extensive inhibitions of TREK-1 activity are observed after activation of protein kinases A and C. TREK-1 currents are sensitive to extracellular K+ and Na+. TREK-1 mRNA is expressed in most tissues and is particularly abundant in the lung and in the brain. Its localization in this latter tissue has been studied by in situ hybridization. TREK-1 expression is high in the olfactory bulb, hippocampus and cerebellum. These results provide the first evidence for the existence of a K+ channel family with four TMS and two pore domains in the nervous system of mammals. They also show that different members in this structural family can have totally different functional properties.


Asunto(s)
Encéfalo/metabolismo , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Clonación Molecular , ADN Complementario , Humanos , Datos de Secuencia Molecular , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Homología de Secuencia de Aminoácido , Transfección , Xenopus
20.
Nature ; 384(6604): 78-80, 1996 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-8900282

RESUMEN

In mammalian cardiac cells, a variety of transient or sustained K+ currents contribute to the repolarization of action potentials. There are two main components of the delayed-rectifier sustained K+ current, I(Kr) (rapid) and I(Ks), (slow). I(Kr) is the product of the gene HERG, which is altered in the long-QT syndrome, LQT2. A channel with properties similar to those of the I(Ks) channel is produced when the cardiac protein IsK is expressed in Xenopus oocytes. However, it is a small protein with a very unusual structure for a cation channel. The LQT1 gene is another gene associated with the LQT syndrome, a disorder that causes sudden death from ventricular arrhythmias. Here we report the cloning of the full-length mouse K(V)LQT1 complementary DNA and show that K(V)LQT1 associates with IsK to form the channel underlying the I(Ks) cardiac current, which is a target of class-III anti-arrhythmic drugs and is involved in the LQT1 syndrome.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Miocardio/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Transactivadores , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular , Clonación Molecular , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Humanos , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Ratones , Datos de Secuencia Molecular , Mutación Puntual , Potasio/metabolismo , Canales de Potasio/genética , Unión Proteica , Homología de Secuencia de Aminoácido , Regulador Transcripcional ERG , Transfección , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA