Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Intensive Care Med Exp ; 12(1): 31, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512544

RESUMEN

BACKGROUND: The individual components of mechanical ventilation may have distinct effects on kidney perfusion and on the risk of developing acute kidney injury; we aimed to explore ventilatory predictors of acute kidney failure and the hemodynamic changes consequent to experimental high-power mechanical ventilation. METHODS: Secondary analysis of two animal studies focused on the outcomes of different mechanical power settings, including 78 pigs mechanically ventilated with high mechanical power for 48 h. The animals were categorized in four groups in accordance with the RIFLE criteria for acute kidney injury (AKI), using the end-experimental creatinine: (1) NO AKI: no increase in creatinine; (2) RIFLE 1-Risk: increase of creatinine of > 50%; (3) RIFLE 2-Injury: two-fold increase of creatinine; (4) RIFLE 3-Failure: three-fold increase of creatinine; RESULTS: The main ventilatory parameter associated with AKI was the positive end-expiratory pressure (PEEP) component of mechanical power. At 30 min from the initiation of high mechanical power ventilation, the heart rate and the pulmonary artery pressure progressively increased from group NO AKI to group RIFLE 3. At 48 h, the hemodynamic variables associated with AKI were the heart rate, cardiac output, mean perfusion pressure (the difference between mean arterial and central venous pressures) and central venous pressure. Linear regression and receiving operator characteristic analyses showed that PEEP-induced changes in mean perfusion pressure (mainly due to an increase in CVP) had the strongest association with AKI. CONCLUSIONS: In an experimental setting of ventilation with high mechanical power, higher PEEP had the strongest association with AKI. The most likely physiological determinant of AKI was an increase of pleural pressure and CVP with reduced mean perfusion pressure. These changes resulted from PEEP per se and from increase in fluid administration to compensate for hemodynamic impairment consequent to high PEEP.

2.
Physiol Rep ; 12(4): e15954, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38366303

RESUMEN

INTRODUCTION: The use of the pulmonary artery catheter has decreased overtime; central venous blood gases are generally used in place of mixed venous samples. We want to evaluate the accuracy of oxygen and carbon dioxide related parameters from a central versus a mixed venous sample, and whether this difference is influenced by mechanical ventilation. MATERIALS AND METHODS: We analyzed 78 healthy female piglets ventilated with different mechanical power. RESULTS: There was a significant difference in oxygen-derived parameters between samples taken from the central venous and mixed venous blood (S v ¯ $$ \overline{v} $$ O2 = 74.6%, ScvO2 = 83%, p < 0.0001). Conversely, CO2-related parameters were similar, with strong correlation. Ventilation with higher mechanical power and PEEP increased the difference between oxygen saturations, (Δ[ScvO2-S v ¯ $$ \overline{v} $$ O2 ] = 7.22% vs. 10.0% respectively in the low and high MP groups, p = 0.020); carbon dioxide-related parameters remained unchanged (p = 0.344). CONCLUSIONS: The venous oxygen saturation (central or mixed) may be influenced by the effects of mechanical ventilation. Therefore, central venous data should be interpreted with more caution when using higher mechanical power. On the contrary, carbon dioxide-derived parameters are more stable and similar between the two sampling sites, independently of mechanical power or positive end expiratory pressures.


Asunto(s)
Dióxido de Carbono , Oxígeno , Animales , Porcinos , Femenino , Oximetría , Análisis de los Gases de la Sangre , Respiración con Presión Positiva
3.
Intensive Care Med Exp ; 12(1): 6, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273120

RESUMEN

INTRODUCTION: Lung weight is an important study endpoint to assess lung edema in porcine experiments on acute respiratory distress syndrome and ventilatory induced lung injury. Evidence on the relationship between lung-body weight relationship is lacking in the literature. The aim of this work is to provide a reference equation between normal lung and body weight in female domestic piglets. MATERIALS AND METHODS: 177 healthy female domestic piglets from previous studies were included in the analysis. Lung weight was assessed either via a CT-scan before any experimental injury or with a scale after autopsy. The animals were randomly divided in a training (n = 141) and a validation population (n = 36). The relation between body weight and lung weight index (lung weight/body weight, g/kg) was described by an exponential function on the training population. The equation was tested on the validation population. A Bland-Altman analysis was performed to compare the lung weight index in the validation population and its theoretical value calculated with the reference equation. RESULTS: A good fit was found between the validation population and the exponential equation extracted from the training population (RMSE = 0.060). The equation to determine lung weight index from body weight was: [Formula: see text] At the Bland and Altman analyses, the mean bias between the real and the expected lung weight index was - 0.26 g/kg (95% CI - 0.96-0.43), upper LOA 3.80 g/kg [95% CI 2.59-5.01], lower LOA - 4.33 g/kg [95% CI = - 5.54-(- 3.12)]. CONCLUSIONS: This exponential function might be a valuable tool to assess lung edema in experiments involving 16-50 kg female domestic piglets. The error that can be made due to the 95% confidence intervals of the formula is smaller than the one made considering the lung to body weight as a linear relationship.

4.
J Appl Physiol (1985) ; 135(2): 334-342, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37345856

RESUMEN

The conditions of temperature, pressure, and saturation in which respiratory gas volumes are expressed [standard temperature and pressure, dry (STPD), ambient temperature and pressure, saturated (ATPS), or body temperature and pressure, saturated (BTPS)] are physiologically relevant, but often ignored or unknown in clinical practice. In this study, we aimed to investigate whether and at which extent the gas volume corrections, either in natural or artificial lung, may alter key respiratory and metabolic variables and the possible clinical consequences. We primarily referred to the effects of gas volume corrections on three physiological variables: physiological dead space, venous admixture, and total CO2 production (V̇co2) during extracorporeal support. We used three physiological models in which calculations of these variables have been performed with and without correction of gas volumes, both in a theoretical model and in 448 patients. The lack of gas volume correction leads to an error in the computation of physiological dead space fraction between 0.05 and 0.15, both in the theoretical model and in the patient population. The venous admixture was minimally affected by the absence of correction (0.01-0.04 error). During extracorporeal support, if the V̇co2 of natural and membrane lung is expressed in different conditions, potentially large errors (0%-18.4%) may occur in the computation of total V̇co2 (V̇co2tot = V̇co2ML + V̇co2NL). This may lead to inappropriate settings of mechanical ventilation with higher plateau pressure. As the dead space and the CO2 sharing between natural and artificial lung are relevant both as prognostic index and as a guide for appropriate mechanical ventilation, their inappropriate computation may lead to erroneous categorization of the patients and inappropriate mechanical treatment.NEW & NOTEWORTHY Gas volume conditions are often ignored or unknown in the clinical practice. However, they could have relevance for the calculation of some key variables in ICU setting. This study shows that gas volume corrections are mostly relevant when assessing CO2 clearance, both in mechanical ventilation and during extracorporeal support, whereas irrelevant for oxygenation assessment of patients. Knowing when the appropriate corrections are needed allows to better understand patients' clinical conditions and to tailor the treatment.


Asunto(s)
Dióxido de Carbono , Respiración Artificial , Humanos , Dióxido de Carbono/metabolismo , Pulmón/metabolismo , Ventiladores Mecánicos , Unidades de Cuidados Intensivos , Volumen de Ventilación Pulmonar , Intercambio Gaseoso Pulmonar
6.
J Crit Care ; 77: 154313, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37116437

RESUMEN

BACKGROUND: Despite its diagnostic and prognostic importance, physiologic dead space fraction is not included in the current ARDS definition or severity classification. ARDS caused by COVID-19 (C-ARDS) is characterized by increased physiologic dead space fraction and hypoxemia. Our aim was to investigate the relationship between dead space indices, markers of inflammation, immunothrombosis, severity and intensive care unit (ICU) mortality. RESULTS: Retrospective data including demographics, gas exchange, ventilatory parameters, and respiratory mechanics in the first 24 h of invasive ventilation. Plasma concentrations of D-dimers and ferritin were not significantly different across C-ARDS severity categories. Weak relationships were found between D-dimers and VR (r = 0.07, p = 0.13), PETCO2/PaCO2 (r = -0.1, p = 0.02), or estimated dead space fraction (r = 0.019, p = 0.68). Age, PaO2/FiO2, pH, PETCO2/PaCO2 and ferritin, were independently associated with ICU mortality. We found no association between D-dimers or ferritin and any dead-space indices adjusting for PaO2/FiO2, days of ventilation, tidal volume, and respiratory system compliance. CONCLUSIONS: We report no association between dead space and inflammatory markers in mechanically ventilated patients with C-ARDS. Our results support theories suggesting that multiple mechanisms, in addition to immunothrombosis, play a role in the pathophysiology of respiratory failure and degree of dead space in C-ARDS.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Estudios Retrospectivos , Dióxido de Carbono , Tromboinflamación , Gravedad del Paciente , Respiración Artificial
7.
Minerva Anestesiol ; 89(6): 577-585, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37000017

RESUMEN

COVID-19 pandemic has seen an unprecedented number of patients presenting with acute respiratory distress syndrome to the intensive care units all over the world. Between August and November 2022, we performed research on PubMed screening all publications on COVID-19 disease and respiratory failure and its treatment. In this review we focused on COVID-19 most common manifestations concerning lung function. The respiratory infection develops in three broad phases: early, intermediate, and late. The mainstay of the disease is the frequent presence of severe hypoxemia associated - at least at the beginning - to a near normal lung mechanics and PaCO2 tension. The management of symptomatic patients, progressing through these temporal phases, is not possible without understanding the pathophysiology underlying the respiratory manifestation.


Asunto(s)
COVID-19 , Trastornos Respiratorios , Síndrome de Dificultad Respiratoria , Humanos , SARS-CoV-2 , Pandemias , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia
8.
Am J Respir Crit Care Med ; 207(9): 1183-1193, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36848321

RESUMEN

Rationale: In the EOLIA (ECMO to Rescue Lung Injury in Severe ARDS) trial, oxygenation was similar between intervention and conventional groups, whereas [Formula: see text]e was reduced in the intervention group. Comparable reductions in ventilation intensity are theoretically possible with low-flow extracorporeal CO2 removal (ECCO2R), provided oxygenation remains acceptable. Objectives: To compare the effects of ECCO2R and extracorporeal membrane oxygenation (ECMO) on gas exchange, respiratory mechanics, and hemodynamics in animal models of pulmonary (intratracheal hydrochloric acid) and extrapulmonary (intravenous oleic acid) lung injury. Methods: Twenty-four pigs with moderate to severe hypoxemia (PaO2:FiO2 ⩽ 150 mm Hg) were randomized to ECMO (blood flow 50-60 ml/kg/min), ECCO2R (0.4 L/min), or mechanical ventilation alone. Measurements and Main Results: [Formula: see text]o2, [Formula: see text]co2, gas exchange, hemodynamics, and respiratory mechanics were measured and are presented as 24-hour averages. Oleic acid versus hydrochloric acid showed higher extravascular lung water (1,424 ± 419 vs. 574 ± 195 ml; P < 0.001), worse oxygenation (PaO2:FiO2 = 125 ± 14 vs. 151 ± 11 mm Hg; P < 0.001), but better respiratory mechanics (plateau pressure 27 ± 4 vs. 30 ± 3 cm H2O; P = 0.017). Both models led to acute severe pulmonary hypertension. In both models, ECMO (3.7 ± 0.5 L/min), compared with ECCO2R (0.4 L/min), increased mixed venous oxygen saturation and oxygenation, and improved hemodynamics (cardiac output = 6.0 ± 1.4 vs. 5.2 ± 1.4 L/min; P = 0.003). [Formula: see text]o2 and [Formula: see text]co2, irrespective of lung injury model, were lower during ECMO, resulting in lower PaCO2 and [Formula: see text]e but worse respiratory elastance compared with ECCO2R (64 ± 27 vs. 40 ± 8 cm H2O/L; P < 0.001). Conclusions: ECMO was associated with better oxygenation, lower [Formula: see text]o2, and better hemodynamics. ECCO2R may offer a potential alternative to ECMO, but there are concerns regarding its effects on hemodynamics and pulmonary hypertension.


Asunto(s)
Lesión Pulmonar Aguda , Hipertensión Pulmonar , Animales , Dióxido de Carbono , Ácido Clorhídrico , Ácido Oléico , Respiración Artificial/métodos , Porcinos
9.
Br J Anaesth ; 130(3): 360-367, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36470747

RESUMEN

BACKGROUND: Ventilatory ratio (VR) has been proposed as an alternative approach to estimate physiological dead space. However, the absolute value of VR, at constant dead space, might be affected by venous admixture and CO2 volume expired per minute (VCO2). METHODS: This was a retrospective, observational study of mechanically ventilated patients with acute respiratory distress syndrome (ARDS) in the UK and Italy. Venous admixture was either directly measured or estimated using the surrogate measure PaO2/FiO2 ratio. VCO2 was estimated through the resting energy expenditure derived from the Harris-Benedict formula. RESULTS: A total of 641 mechanically ventilated patients with mild (n=65), moderate (n=363), or severe (n=213) ARDS were studied. Venous admixture was measured (n=153 patients) or estimated using the PaO2/FiO2 ratio (n=448). The VR increased exponentially as a function of the dead space, and the absolute values of this relationship were a function of VCO2. At a physiological dead space of 0.6, VR was 1.1, 1.4, and 1.7 in patients with VCO2 equal to 200, 250, and 300, respectively. VR was independently associated with mortality (odds ratio [OR]=2.5; 95% confidence interval [CI], 1.8-3.5), but was not associated when adjusted for VD/VTphys, VCO2, PaO2/FiO2 (ORadj=1.2; 95% CI, 0.7-2.1). These three variables remained independent predictors of ICU mortality (VD/VTphys [ORadj=17.9; 95% CI, 1.8-185; P<0.05]; VCO2 [ORadj=0.99; 95% CI, 0.99-1.00; P<0.001]; and PaO2/FiO2 (ORadj=0.99; 95% CI, 0.99-1.00; P<0.001]). CONCLUSIONS: VR is a useful aggregate variable associated with outcome, but variables not associated with ventilation (VCO2 and venous admixture) strongly contribute to the high values of VR seen in patients with severe illness.


Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Estudios Retrospectivos , Síndrome de Dificultad Respiratoria/terapia , Respiración , Italia , Espacio Muerto Respiratorio , Respiración Artificial
10.
J Appl Physiol (1985) ; 133(5): 1212-1219, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36173324

RESUMEN

The amount of energy delivered to the respiratory system is recognized as a cause of ventilator-induced lung injury (VILI). How energy dissipation within the lung parenchyma causes damage is still a matter of debate. Expiratory flow control has been proposed as a strategy to reduce the energy dissipated into the respiratory system during expiration and, possibly, VILI. We studied 22 healthy pigs (29 ± 2 kg), which were randomized into a control (n = 11) and a valve group (n = 11), where the expiratory flow was controlled through a variable resistor. Both groups were ventilated with the same tidal volume, positive end-expiratory pressure (PEEP), and inspiratory flow. Electric impedance tomography was continuously acquired. At completion, lung weight, wet-to-dry ratios, and histology were evaluated. The total mechanical power was similar in the control and valve groups (8.54 ± 0.83 J·min-1 and 8.42 ± 0.54 J·min-1, respectively, P = 0.552). The total energy dissipated within the whole system (circuit + respiratory system) was remarkably different (4.34 ± 0.66 vs. 2.62 ± 0.31 J/min, P < 0.001). However, most of this energy was dissipated across the endotracheal tube (2.87 ± 0.3 vs. 1.88 ± 0.2 J/min, P < 0.001). The amount dissipated into the respiratory system averaged 1.45 ± 0.5 in controls versus 0.73 ± 0.16 J·min-1 in the valve group, P < 0.001. Although respiratory mechanics, gas exchange, hemodynamics, wet-to-dry ratios, and histology were similar in the two groups, the decrease of end-expiratory lung impedance was significantly greater in the control group (P = 0.02). We conclude that with our experimental conditions, the reduction of energy dissipated in the respiratory system did not lead to appreciable differences in VILI.NEW & NOTEWORTHY Energy dissipation within the respiratory system is a factor promoting ventilator-induced lung injury (VILI). In this animal study, we modulated the expiratory flow, reducing the energy dissipated in the system. However, this reduction happened mostly across the endotracheal tube, and only partly in the respiratory system. Therefore, in healthy lungs, the advantage in energy dissipation does not reduce VILI, but the advantages might be more relevant in diseased lungs under injurious ventilation.


Asunto(s)
Lesión Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Porcinos , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Volumen de Ventilación Pulmonar , Respiración con Presión Positiva/métodos , Mecánica Respiratoria , Espiración , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Pulmón
11.
Am J Respir Crit Care Med ; 206(8): 973-980, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35608503

RESUMEN

Rationale: Weaning from venovenous extracorporeal membrane oxygenation (VV-ECMO) is based on oxygenation and not on carbon dioxide elimination. Objectives: To predict readiness to wean from VV-ECMO. Methods: In this multicenter study of mechanically ventilated adults with severe acute respiratory distress syndrome receiving VV-ECMO, we investigated a variable based on CO2 elimination. The study included a prospective interventional study of a physiological cohort (n = 26) and a retrospective clinical cohort (n = 638). Measurements and Main Results: Weaning failure in the clinical and physiological cohorts were 37% and 42%, respectively. The main cause of failure in the physiological cohort was high inspiratory effort or respiratory rate. All patients exhaled similar amounts of CO2, but in patients who failed the weaning trial, [Formula: see text]e was higher to maintain the PaCO2 unchanged. The effort to eliminate one unit-volume of CO2, was double in patients who failed (68.9 [42.4-123] vs. 39 [20.1-57] cm H2O/[L/min]; P = 0.007), owing to the higher physiological Vd (68 [58.73] % vs. 54 [41.64] %; P = 0.012). End-tidal partial carbon dioxide pressure (PetCO2)/PaCO2 ratio was a clinical variable strongly associated with weaning outcome at baseline, with area under the receiver operating characteristic curve of 0.87 (95% confidence interval [CI], 0.71-1). Similarly, the PetCO2/PaCO2 ratio was associated with weaning outcome in the clinical cohort both before the weaning trial (odds ratio, 4.14; 95% CI, 1.32-12.2; P = 0.015) and at a sweep gas flow of zero (odds ratio, 13.1; 95% CI, 4-44.4; P < 0.001). Conclusions: The primary reason for weaning failure from VV-ECMO is high effort to eliminate CO2. A higher PetCO2/PaCO2 ratio was associated with greater likelihood of weaning from VV-ECMO.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Adulto , Dióxido de Carbono , Humanos , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos
12.
Physiol Rep ; 10(6): e15225, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35340133

RESUMEN

The extent of ventilator-induced lung injury may be related to the intensity of mechanical ventilation--expressed as mechanical power. In the present study, we investigated whether there is a safe threshold, below which lung damage is absent. Three groups of six healthy pigs (29.5 ± 2.5 kg) were ventilated prone for 48 h at mechanical power of 3, 7, or 12 J/min. Strain never exceeded 1.0. PEEP was set at 4 cmH2 O. Lung volumes were measured every 12 h; respiratory, hemodynamics, and gas exchange variables every 6. End-experiment histological findings were compared with a control group of eight pigs which did not undergo mechanical ventilation. Functional residual capacity decreased by 10.4% ± 10.6% and 8.1% ± 12.1% in the 7 J and 12 J groups (p = 0.017, p < 0.001) but not in the 3 J group (+1.7% ± 17.7%, p = 0.941). In 3 J group, lung elastance, PaO2 and PaCO2 were worse compared to 7 J and 12 J groups (all p < 0.001), due to lower ventilation-perfusion ratio (0.54 ± 0.13, 1.00 ± 0.25, 1.78 ± 0.36 respectively, p < 0.001). The lung weight was lower (p < 0.001) in the controls (6.56 ± 0.90 g/kg) compared to 3, 7, and 12 J groups (12.9 ± 3.0, 16.5 ± 2.9, and 15.0 ± 4.1 g/kg, respectively). The wet-to-dry ratio was 5.38 ± 0.26 in controls, 5.73 ± 0.52 in 3 J, 5.99 ± 0.38 in 7 J, and 6.13 ± 0.59 in 12 J group (p = 0.03). Vascular congestion was more extensive in the 7 J and 12 J compared to 3 J and control groups. Mechanical ventilation (with anesthesia/paralysis) increase lung weight, and worsen lung histology, regardless of the mechanical power. Ventilating at 3 J/min led to better anatomical variables than at 7 and 12 J/min but worsened the physiological values.


Asunto(s)
Respiración Artificial , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Pulmón/patología , Respiración Artificial/efectos adversos , Pruebas de Función Respiratoria , Frecuencia Respiratoria , Porcinos
13.
Crit Care Med ; 50(7): e630-e637, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35132021

RESUMEN

OBJECTIVES: Lung damage during mechanical ventilation involves lung volume and alveolar water content, and lung ultrasound (LUS) and electrical impedance tomography changes are related to these variables. We investigated whether these techniques may detect any signal modification during the development of ventilator-induced lung injury (VILI). DESIGN: Experimental animal study. SETTING: Experimental Department of a University Hospital. SUBJECTS: Forty-two female pigs (24.2 ± 2.0 kg). INTERVENTIONS: The animals were randomized into three groups (n = 14): high tidal volume (TV) (mean TV, 803.0 ± 121.7 mL), high respiratory rate (RR) (mean RR, 40.3 ± 1.1 beats/min), and high positive-end-expiratory pressure (PEEP) (mean PEEP, 24.0 ± 1.1 cm H2O). The study lasted 48 hours. At baseline and at 30 minutes, and subsequently every 6 hours, we recorded extravascular lung water, end-expiratory lung volume, lung strain, respiratory mechanics, hemodynamics, and gas exchange. At the same time-point, end-expiratory impedance was recorded relatively to the baseline. LUS was assessed every 12 hours in 12 fields, each scoring from 0 (presence of A-lines) to 3 (consolidation). MEASUREMENTS AND MAIN RESULTS: In a multiple regression model, the ratio between extravascular lung water and end-expiratory lung volume was significantly associated with the LUS total score (p < 0.002; adjusted R2, 0.21). The variables independently associated with the end-expiratory difference in lung impedance were lung strain (p < 0.001; adjusted R2, 0.18) and extravascular lung water (p < 0.001; adjusted R2, 0.11). CONCLUSIONS: Data suggest as follows. First, what determines the LUS score is the ratio between water and gas and not water alone. Therefore, caution is needed when an improvement of LUS score follows a variation of the lung gas content, as after a PEEP increase. Second, what determines the end-expiratory difference in lung impedance is the strain level that may disrupt the intercellular junction, therefore altering lung impedance. In addition, the increase in extravascular lung water during VILI development contributed to the observed decrease in impedance.


Asunto(s)
Lesión Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Impedancia Eléctrica , Femenino , Humanos , Pulmón/diagnóstico por imagen , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/etiología , Respiración con Presión Positiva/métodos , Porcinos , Volumen de Ventilación Pulmonar , Tomografía Computarizada por Rayos X , Lesión Pulmonar Inducida por Ventilación Mecánica/diagnóstico por imagen
15.
Intensive Care Med ; 48(1): 56-66, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34825929

RESUMEN

PURPOSE: This study aimed at investigating the mechanisms underlying the oxygenation response to proning and recruitment maneuvers in coronavirus disease 2019 (COVID-19) pneumonia. METHODS: Twenty-five patients with COVID-19 pneumonia, at variable times since admission (from 1 to 3 weeks), underwent computed tomography (CT) lung scans, gas-exchange and lung-mechanics measurement in supine and prone positions at 5 cmH2O and during recruiting maneuver (supine, 35 cmH2O). Within the non-aerated tissue, we differentiated the atelectatic and consolidated tissue (recruitable and non-recruitable at 35 cmH2O of airway pressure). Positive/negative response to proning/recruitment was defined as increase/decrease of PaO2/FiO2. Apparent perfusion ratio was computed as venous admixture/non aerated tissue fraction. RESULTS: The average values of venous admixture and PaO2/FiO2 ratio were similar in supine-5 and prone-5. However, the PaO2/FiO2 changes (increasing in 65% of the patients and decreasing in 35%, from supine to prone) correlated with the balance between resolution of dorsal atelectasis and formation of ventral atelectasis (p = 0.002). Dorsal consolidated tissue determined this balance, being inversely related with dorsal recruitment (p = 0.012). From supine-5 to supine-35, the apparent perfusion ratio increased from 1.38 ± 0.71 to 2.15 ± 1.15 (p = 0.004) while PaO2/FiO2 ratio increased in 52% and decreased in 48% of patients. Non-responders had consolidated tissue fraction of 0.27 ± 0.1 vs. 0.18 ± 0.1 in the responding cohort (p = 0.04). Consolidated tissue, PaCO2 and respiratory system elastance were higher in patients assessed late (all p < 0.05), suggesting, all together, "fibrotic-like" changes of the lung over time. CONCLUSION: The amount of consolidated tissue was higher in patients assessed during the third week and determined the oxygenation responses following pronation and recruitment maneuvers.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Pulmón/diagnóstico por imagen , Posición Prona , Estudios Prospectivos , Intercambio Gaseoso Pulmonar , SARS-CoV-2
16.
Eur Respir Rev ; 30(162)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34670808

RESUMEN

Coronavirus disease 2019 (COVID-19) pneumonia is an evolving disease. We will focus on the development of its pathophysiologic characteristics over time, and how these time-related changes determine modifications in treatment. In the emergency department: the peculiar characteristic is the coexistence, in a significant fraction of patients, of severe hypoxaemia, near-normal lung computed tomography imaging, lung gas volume and respiratory mechanics. Despite high respiratory drive, dyspnoea and respiratory rate are often normal. The underlying mechanism is primarily altered lung perfusion. The anatomical prerequisites for PEEP (positive end-expiratory pressure) to work (lung oedema, atelectasis, and therefore recruitability) are lacking. In the high-dependency unit: the disease starts to worsen either because of its natural evolution or additional patient self-inflicted lung injury (P-SILI). Oedema and atelectasis may develop, increasing recruitability. Noninvasive supports are indicated if they result in a reversal of hypoxaemia and a decreased inspiratory effort. Otherwise, mechanical ventilation should be considered to avert P-SILI. In the intensive care unit: the primary characteristic of the advance of unresolved COVID-19 disease is a progressive shift from oedema or atelectasis to less reversible structural lung alterations to lung fibrosis. These later characteristics are associated with notable impairment of respiratory mechanics, increased arterial carbon dioxide tension (P aCO2 ), decreased recruitability and lack of response to PEEP and prone positioning.


Asunto(s)
COVID-19/fisiopatología , COVID-19/terapia , Pulmón/fisiopatología , Respiración con Presión Positiva/métodos , Respiración Artificial/métodos , Humanos , Atelectasia Pulmonar/prevención & control , Mecánica Respiratoria , SARS-CoV-2
17.
Intensive Care Med ; 47(10): 1130-1139, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34529118

RESUMEN

PURPOSE: We investigated if the stress applied to the lung during non-invasive respiratory support may contribute to the coronavirus disease 2019 (COVID-19) progression. METHODS: Single-center, prospective, cohort study of 140 consecutive COVID-19 pneumonia patients treated in high-dependency unit with continuous positive airway pressure (n = 131) or non-invasive ventilation (n = 9). We measured quantitative lung computed tomography, esophageal pressure swings and total lung stress. RESULTS: Patients were divided in five subgroups based on their baseline PaO2/FiO2 (day 1): non-CARDS (median PaO2/FiO2 361 mmHg, IQR [323-379]), mild (224 mmHg [211-249]), mild-moderate (173 mmHg [164-185]), moderate-severe (126 mmHg [114-138]) and severe (88 mmHg [86-99], p < 0.001). Each subgroup had similar median lung weight: 1215 g [1083-1294], 1153 [888-1321], 968 [858-1253], 1060 [869-1269], and 1127 [937-1193] (p = 0.37). They also had similar non-aerated tissue fraction: 10.4% [5.9-13.7], 9.6 [7.1-15.8], 9.4 [5.8-16.7], 8.4 [6.7-12.3] and 9.4 [5.9-13.8], respectively (p = 0.85). Treatment failure of CPAP/NIV occurred in 34 patients (24.3%). Only three variables, at day one, distinguished patients with negative outcome: PaO2/FiO2 ratio (OR 0.99 [0.98-0.99], p = 0.02), esophageal pressure swing (OR 1.13 [1.01-1.27], p = 0.032) and total stress (OR 1.17 [1.06-1.31], p = 0.004). When these three variables were evaluated together in a multivariate logistic regression analysis, only the total stress was independently associated with negative outcome (OR 1.16 [1.01-1.33], p = 0.032). CONCLUSIONS: In early COVID-19 pneumonia, hypoxemia is not linked to computed tomography (CT) pathoanatomy, differently from typical ARDS. High lung stress was independently associated with the failure of non-invasive respiratory support.


Asunto(s)
COVID-19 , Estudios de Cohortes , Humanos , Pulmón/diagnóstico por imagen , Estudios Prospectivos , SARS-CoV-2
18.
Front Physiol ; 12: 743153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34588999

RESUMEN

Background: Ventilator-induced lung injury (VILI) via respiratory mechanics is deeply interwoven with hemodynamic, kidney and fluid/electrolyte changes. We aimed to assess the role of positive fluid balance in the framework of ventilation-induced lung injury. Methods: Post-hoc analysis of seventy-eight pigs invasively ventilated for 48 h with mechanical power ranging from 18 to 137 J/min and divided into two groups: high vs. low pleural pressure (10.0 ± 2.8 vs. 4.4 ± 1.5 cmH2O; p < 0.01). Respiratory mechanics, hemodynamics, fluid, sodium and osmotic balances, were assessed at 0, 6, 12, 24, 48 h. Sodium distribution between intracellular, extracellular and non-osmotic sodium storage compartments was estimated assuming osmotic equilibrium. Lung weight, wet-to-dry ratios of lung, kidney, liver, bowel and muscle were measured at the end of the experiment. Results: High pleural pressure group had significant higher cardiac output (2.96 ± 0.92 vs. 3.41 ± 1.68 L/min; p < 0.01), use of norepinephrine/epinephrine (1.76 ± 3.31 vs. 5.79 ± 9.69 mcg/kg; p < 0.01) and total fluid infusions (3.06 ± 2.32 vs. 4.04 ± 3.04 L; p < 0.01). This hemodynamic status was associated with significantly increased sodium and fluid retention (at 48 h, respectively, 601.3 ± 334.7 vs. 1073.2 ± 525.9 mmol, p < 0.01; and 2.99 ± 2.54 vs. 6.66 ± 3.87 L, p < 0.01). Ten percent of the infused sodium was stored in an osmotically inactive compartment. Increasing fluid and sodium retention was positively associated with lung-weight (R 2 = 0.43, p < 0.01; R 2 = 0.48, p < 0.01) and with wet-to-dry ratio of the lungs (R 2 = 0.14, p < 0.01; R 2 = 0.18, p < 0.01) and kidneys (R 2 = 0.11, p = 0.02; R 2 = 0.12, p = 0.01). Conclusion: Increased mechanical power and pleural pressures dictated an increase in hemodynamic support resulting in proportionally increased sodium and fluid retention and pulmonary edema.

19.
Front Physiol ; 12: 682877, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447316

RESUMEN

Inflammation and oxidative stress characterize sepsis and determine its severity. In this study, we investigated the relationship between albumin oxidation and sepsis severity in a selected cohort of patients from the Albumin Italian Outcome Study (ALBIOS). A retrospective analysis was conducted on the oxidation forms of human albumin [human mercapto-albumin (HMA), human non-mercapto-albumin form 1 (HNA1) and human non-mercapto-albumin form 2 (HNA2)] in 60 patients with severe sepsis or septic shock and 21 healthy controls. The sepsis patients were randomized (1:1) to treatment with 20% albumin and crystalloid solution or crystalloid solution alone. The albumin oxidation forms were measured at day 1 and day 7. To assess the albumin oxidation forms as a function of oxidative stress, the 60 sepsis patients, regardless of the treatment, were grouped based on baseline sequential organ failure assessment (SOFA) score as surrogate marker of oxidative stress. At day 1, septic patients had significantly lower levels of HMA and higher levels of HNA1 and HNA2 than healthy controls. HMA and HNA1 concentrations were similar in patients treated with albumin or crystalloids at day 1, while HNA2 concentration was significantly greater in albumin-treated patients (p < 0.001). On day 7, HMA was significantly higher in albumin-treated patients, while HNA2 significantly increased only in the crystalloids-treated group, reaching values comparable with the albumin group. When pooling the septic patients regardless of treatment, albumin oxidation was similar across all SOFA groups at day 1, but at day 7 HMA was lower at higher SOFA scores. Mortality rate was independently associated with albumin oxidation levels measured at day 7 (HMA log-rank = 0.027 and HNA2 log-rank = 0.002), irrespective of treatment group. In adjusted regression analyses for 90-day mortality, this effect remained significant for HMA and HNA2. Our data suggest that the oxidation status of albumin is modified according to the time of exposure to oxidative stress (differences between day 1 and day 7). After 7 days of treatment, lower SOFA scores correlate with higher albumin antioxidant capacity. The trend toward a positive effect of albumin treatment, while not statistically significant, warrants further investigation.

20.
Intensive Care Med Exp ; 9(1): 21, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33871738

RESUMEN

BACKGROUND: The physiological dead space is a strong indicator of severity and outcome of acute respiratory distress syndrome (ARDS). The "ideal" alveolar PCO2, in equilibrium with pulmonary capillary PCO2, is a central concept in the physiological dead space measurement. As it cannot be measured, it is surrogated by arterial PCO2 which, unfortunately, may be far higher than ideal alveolar PCO2, when the right-to-left venous admixture is present. The "ideal" alveolar PCO2 equals the end-tidal PCO2 (PETCO2) only in absence of alveolar dead space. Therefore, in the perfect gas exchanger (alveolar dead space = 0, venous admixture = 0), the PETCO2/PaCO2 is 1, as PETCO2, PACO2 and PaCO2 are equal. Our aim is to investigate if and at which extent the PETCO2/PaCO2, a comprehensive meter of the "gas exchanger" performance, is related to the anatomo physiological characteristics in ARDS. RESULTS: We retrospectively studied 200 patients with ARDS. The source was a database in which we collected since 2003 all the patients enrolled in different CT scan studies. The PETCO2/PaCO2, measured at 5 cmH2O airway pressure, significantly decreased from mild to mild-moderate moderate-severe and severe ARDS. The overall populations was divided into four groups (~ 50 patients each) according to the quartiles of the PETCO2/PaCO2 (lowest ratio, the worst = group 1, highest ratio, the best = group 4). The progressive increase PETCO2/PaCO2 from quartile 1 to 4 (i.e., the progressive approach to the "perfect" gas exchanger value of 1.0) was associated with a significant decrease of non-aerated tissue, inohomogeneity index and increase of well-aerated tissue. The respiratory system elastance significantly improved from quartile 1 to 4, as well as the PaO2/FiO2 and PaCO2. The improvement of PETCO2/PaCO2 was also associated with a significant decrease of physiological dead space and venous admixture. When PEEP was increased from 5 to 15 cmH2O, the greatest improvement of non-aerated tissue, PaO2 and venous admixture were observed in quartile 1 of PETCO2/PaCO2 and the worst deterioration of dead space in quartile 4. CONCLUSION: The ratio PETCO2/PaCO2 is highly correlated with CT scan, physiological and clinical variables. It appears as an excellent measure of the overall "gas exchanger" status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...