Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 268: 115688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992649

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), which is linked to western diet (WD) intake, affects 30% of the world's population and involves the crosstalk of liver steatosis, hypertrophy/inflammation of adipose tissue and deregulation of gut microbiome. Glyphosate and 2,4-D are some of the most applied herbicides worldwide, and their roles in NAFLD have not been investigated. Thus, the present study evaluated whether glyphosate and 2,4-D, in single or mixed exposure, alter WD-induced NAFLD in a mouse model. Male C57Bl/6 mice (n = 10/group) received a fat (30% lard, 0.02% cholesterol), and sucrose-rich diet (20%) and high sugar solution (23.1 and 18.9 g/L of fructose and glucose) for 6 months. Simultaneously, animals received glyphosate (0.05 or 5 mg/kg/day), 2,4-D (0.02 or 2 mg/kg/day), or their combination (0.05 +0.02 or 5 +2 mg/kg/day) by intragastrical administration (5 ×/week). Doses were based on the Acceptable Daily Intake (ADIs) or No Observed Adverse Effect Level (NOAEL) levels. Herbicide exposures featured differential responses. WD-induced obesity, hypercholesterolemia, and hyperglycemia remained unaltered. Compared to the group receiving only WD, only the concomitant exposure to WD and 2,4-D (2 mg) enhanced the percentage of mice with moderate/severe hepatic inflammation, CD68 macrophage infiltration, and malondialdehyde levels in the liver. In line, this herbicide modulated immune response- (including Cd4, C8b, Cd28, Cxcr3, Cxcr6) and oxidative stress-related (such as Gsta1, Gsta2, Gsta4, Gstm1, Gstm2, Gstm3, Gstm4, Nqo1, Gpx2) genes in the hepatic transcriptome analysis. This exposure also enriched pro-inflammatory Deferribacteres phylum in fecal microbiome. In general, the herbicide mixtures did not feature the same effects attributed to 2,4-D isolated exposure. Our findings indicate that 2,4-D, at a dose within the toxicological limits, was able to induce disturbances in mainly at the liver and gut axes involved in NAFLD development in male mice.


Asunto(s)
Herbicidas , Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Hígado , Inflamación , Tejido Adiposo , Dieta Occidental/efectos adversos , Herbicidas/toxicidad , Ácido 2,4-Diclorofenoxiacético/toxicidad , Ratones Endogámicos C57BL , Glifosato
2.
Food Res Int ; 174(Pt 1): 113513, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986509

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, affecting almost 32% of the population and ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). Recent findings indicate that the fast-growing prevalence of NAFLD might be linked to adherence to a Westernized diet (WD), mostly composed of fat/sugar-enriched foods. The WD has been reportedly targeted as a potential driver of gut-liver axis unbalance, suggesting a major role in NASH. On the other hand, bioactive food compounds feature as a potential chemopreventive strategy against NASH, due to their beneficial effects (i.e, anti-inflammatory/oxidant activity and modulation of gut microbiome). Brassicaceae vegetables are known for their high amount of isothiocyanates and polyphenols, as indole-3-carbinol (I3C) and chlorogenic acid (CGA). Thus, we sought to assess the effects of human relevant doses of I3C and CGA isolated or in combination (5/125 mg/Kg of body weight, respectively) on a diet/chemical-induced murine model of NASH. I3C + CGA oral treatment diminished NAFLD activity score (NAS) (p < 0.0001), as well as alleviated the hepatic lipid (p = 0.0011) accumulation, prevented hepatic stellate cell (HSC) activation (p < 0.0001), and subsequent fibrosis (p < 0.0001). The combination also reduced the number of both hepatic CD68-positive macrophages (p < 0.0001) and cleaved caspase-3 hepatocytes (p < 0.0001) and diminished the malondialdehyde levels (p = 0.0155). Additionally, the combination of I3C + CGA restored the relative abundance of Alistipes (p = 0.0299), Allobaculum (p = 0.0014), Bacteroides (p = 0.0046), and Odoribacter (p = 0.0030) bacteria genera on the gut microbiome. Taken together, these findings show that the combination of I3C + CGA at populational-relevant ingestion, rather than the I3C or CGA alone, was able to modulate gut microbiome and attenuate NASH in this hybrid model mouse.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ácido Clorogénico/farmacología , Modelos Animales de Enfermedad
3.
Environ Toxicol Pharmacol ; 104: 104286, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37805155

RESUMEN

We evaluated whether glyphosate promotes western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed WD and received intragastrical glyphosate (0.05, 5 or 50 mg/kg) for 6 months. Glyphosate did not promote WD-induced obesity, hypercholesterolemia, glucose intolerance, hepatic steatosis, and fibrosis. Nonetheless, the higher dose (50 mg) enhanced hepatic CD68+ macrophage density, p65, TNF-α, and IL-6 protein levels. Furthermore, this dose decreased hepatic Nrf2 levels, while enhancing lipid peroxidation in the liver and adipose tissue. Hepatic transcriptome revealed that glyphosate at 50 mg upregulated 212 genes and downregulated 731 genes. Genes associated with oxidative stress and inflammation were upregulated, while key cell cycle-related genes were downregulated. Our results indicate that glyphosate exposure - in a dose within the toxicological limits - impairs hepatic inflammation/redox dynamics in a NAFLD microenvironment.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Dieta Occidental/efectos adversos , Ratones Endogámicos C57BL , Hígado , Inflamación/metabolismo , Dieta Alta en Grasa
4.
Antioxidants (Basel) ; 12(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36829849

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) encompasses nonalcoholic steatohepatitis (NASH) and affects 25% of the global population. Although a plethora of experimental models for studying NASH have been proposed, still scarce findings regarding the hepatic metabolomic/molecular profile. In the present study, we sought to unravel the hepatic metabolomic profile of mice subjected to a hybrid model of NASH, by combining a Western diet and carbon tetrachloride administration, for 8 weeks, in male C57BL/6J and BALB/c mice. In both mouse strains, the main traits of NASH-metabolic (glucose intolerance profile), morphologic (extensive microvesicular steatosis and fibrosis, lobular inflammation, and adipose tissue-related inflammation/hypertrophy), and molecular (impaired Nrf2/NF-κB pathway dynamics and altered metabolomic profile)-were observed. The hepatic metabolomic profile revealed that the hybrid protocol impaired, in both strains, the abundance of branched chain-aromatic amino acids, carboxylic acids, and glycosyl compounds, that might be linked to the Nrf2 pathway activation. Moreover, we observed a strain-dependent hepatic metabolomic signature, in which the tricarboxylic acid metabolites and pyruvate metabolism were dissimilarly modulated in C57BL/6J and BALB/c mice. Thus, we provide evidence that the strain-dependent hepatic metabolomic profile might be linked to the distinct underlying mechanisms of NASH, also prospecting potential mechanistic insights into the corresponding disease.

5.
Nutrition ; 103-104: 111836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36202025

RESUMEN

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) has a growing epidemiologic and economic burden. It is associated with Western diet (WD) patterns, and its pathogenesis involves metabolic disorders (obesity, dyslipidemia, hyperglycemia, and diabetes) and gut dysbiosis, features that are usually neglected or not reproduced by most animal models. Thus, we established a 6-mo WD-induced NAFLD mouse model associated with metabolic disorder, investigating its main features at the gut microbiome-liver-adipose tissue axis, also evaluating the correlations of gut dysbiosis to the other disease outcomes. METHODS: Male C57 BL6 mice received a high-fat (30% lard and 0.2% cholesterol, ∼57% calories) and sucrose-rich (20%) chow, and a high-sugar solution (23.1 and 18.9 g/L of D-fructose and D-glucose) for 6 mo. RESULTS: The model featured high serum cholesterol levels, glucose intolerance, and hyperinsulinemia. WD intervention resulted in extensive macro/microvesicular liver steatosis and pericellular fibrosis-resembling human disease-accompanied by hepatic stellate cell activation and CD68+ macrophage infiltration, increased protein levels of proinflammatory p65-nuclear factor-κB, interleukin-6 and tumor necrosis factor-α, with decreased antioxidant regulator Nrf2. Mice showed clear obesity with adipocyte hypertrophy, and CD68+macrophage/mast cell infiltration in adipose tissue while a reduction in number of goblet cells was also observed in the small intestine. Moreover, the pyrosequencing of the 16 S ribosomal RNA of gut cecal content showed decreased bacterial diversity, enriched Firmicutes and Proteobacteria, decreased Bacteroidetes and Fusobacteria, and increased ratio of Firmicutes to Bacteroidetes. Bacteroidetes and Bacteroides had the highest number of significant correlations with liver-adipose tissue axis outcomes. In silico analysis of gut microbiome in NAFLD obese patients revealed a depletion in Bacteroides, which also correlated to disease outcomes. CONCLUSION: This mice model gathered suitable phenotypical alterations in gut-liver-adipose tissue axis that resembled NAFLD associated with metabolic disorders in humans and may be considered for preclinical investigation.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Dieta Occidental/efectos adversos , Microbioma Gastrointestinal/fisiología , Disbiosis/metabolismo , Hígado/metabolismo , Obesidad/etiología , Modelos Animales de Enfermedad , Tejido Adiposo/metabolismo , Bacteroides , Colesterol , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
6.
Pharmaceutics ; 14(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145654

RESUMEN

Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.

7.
Food Funct ; 13(16): 8348-8362, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35899794

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a lipid impairment-related chronic metabolic disease that affects almost 25% of the worldwide population and has become the leading cause of liver transplantation in the United States of America (USA). NAFLD may progress from simple hepatic steatosis (HS) to nonalcoholic steatohepatitis (NASH), which occurs simultaneously in an inflammatory and fibrotic microenvironment and affects approximately 5% of the global population. Recently, NASH has been suggested to be a relevant driver in progressive liver cirrhosis and a population-attributable factor in hepatocellular carcinoma patients. Moreover, predictions show that NAFLD-related annual health costs in the USA have reached ∼$100 bi., but effective therapies are still scarce. Thus, new preventative strategies for this hepatic disease urgently need to be developed. The Brassicaceae vegetable family includes almost 350 genera and 3500 species and these are one of the main types of vegetables harvested and produced worldwide. These vegetables are well-known sources of glucobrassicin-derivative molecules, such as isothiocyanates and phenolic compounds, which have shown antioxidant and antilipogenic effects in preclinical NAFLD data. In this review, we gathered prominent evidence of the in vivo and in vitro effects of these vegetable-derived nutraceutical compounds on the gut-liver-adipose axis, which is a well-known regulator of NAFLD and may represent a new strategy for disease control.


Asunto(s)
Brassicaceae , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Polifenoles/farmacología , Polifenoles/uso terapéutico , Microambiente Tumoral , Verduras
8.
J Steroid Biochem Mol Biol ; 215: 106022, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774723

RESUMEN

Vitamin D3 (VD3) deficiency has been associated with increased risk for cirrhosis and hepatocellular carcinoma, a highly incident malignant neoplasia worldwide. On the other hand, VD3 supplementation has shown some beneficial effects in clinical studies and rodent models of chronic liver disease. However, preventive effects of dietary VD3 supplementation in cirrhosis-associated hepatocarcinogenesis is still unknow. To investigate this purpose, male Wistar rats submitted to a combined diethylnitrosamine- and thioacetamide-induced model were concomitantly supplemented with VD3 (5,000 and 10,000 IU/kg diet) for 25 weeks. Liver samples were collected for histological, biochemical and molecular analysis. Serum samples were used to measure 25-hydroxyvitamin D [25(OH)D] and alanine aminotransferase levels. Both VD3 interventions decreased hepatic collagen deposition and pro-inflammatory p65 protein levels, while increased hepatic antioxidant catalase and glutathione peroxidase activities and serum 25(OH)D, without a clear dose-response effect. Nonetheless, only the highest concentration of VD3 increased hepatic protein levels of VD receptor, while decreased the number of large preneoplastic glutathione-S-transferase- (>0.5 mm²) and keratin 8/18-positive lesions, as well the multiplicity of hepatocellular adenomas. Moreover, this intervention increased hepatic antioxidant Nrf2 protein levels and glutathione-S-transferase activity. In summary, dietary VD3 supplementation - in special the highest intervention - showed antifibrotic and antineoplastic properties in chemically-induced cirrhosis-associated hepatocarcinogenesis. The positive modulation of Nrf2 antioxidant axis may be mechanistically involved with these beneficial effects, and may guide future clinical studies.


Asunto(s)
Adenoma de Células Hepáticas/prevención & control , Carcinoma Hepatocelular/prevención & control , Suplementos Dietéticos , Cirrosis Hepática/tratamiento farmacológico , Neoplasias Hepáticas/prevención & control , Vitamina D/administración & dosificación , Adenoma de Células Hepáticas/inducido químicamente , Adenoma de Células Hepáticas/metabolismo , Adenoma de Células Hepáticas/patología , Alanina Transaminasa/sangre , Alanina Transaminasa/genética , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Catalasa/sangre , Catalasa/genética , Quimioprevención/métodos , Colágeno/genética , Colágeno/metabolismo , Dietilnitrosamina/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión Peroxidasa/sangre , Glutatión Peroxidasa/genética , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Queratinas/genética , Queratinas/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ratas , Ratas Wistar , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Tioacetamida/toxicidad , Vitamina D/análogos & derivados , Vitamina D/sangre
9.
J Dairy Sci ; 104(7): 7406-7414, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33934866

RESUMEN

Sheep dairy products containing prebiotic and probiotic ingredients may have health-promoting properties. Thus, this study evaluated the effects of sheep milk ice cream [conventional full-fat (CONV), full-fat enriched with probiotic (PROB, 100 mg % wt/wt of Lacticaseibacillus casei 01), or nonfat synbiotic (SYNB, Lacticaseibacillus casei 01 and inulin, 10% wt/wt)] on carcinogen-induced colonic crypt cytotoxicity and premalignant lesion development. Male Swiss mice received 2 doses of colon carcinogen azoxymethane (AOM, 15 mg/kg of body weight) at wk 3 and 4. Two weeks before and during AOM administrations (4 wk) mice were treated with CONV, PROB, or SYNB by gavage (10 mL/kg). Mice were euthanized at wk 4 or 25 (n = 5 or 10 mice/group, respectively). At wk 4, a significant reduction in micronucleated colonocytes was observed in PROB and SYNB groups, and a significant decrease in both p53 expression and apoptosis indexes in colonic crypts was observed in SYNB group. At wk 25, both PROB and SYNB interventions reduced the mean number of colonic premalignant lesions. However, only SYNB group showed lower incidence and number of high-grade premalignant lesions in the colonic mucosa. These findings indicate that PROB or SYNB sheep milk ice cream, especially SYNB intervention, can reduce chemically induced mouse colon carcinogenesis.


Asunto(s)
Neoplasias del Colon , Helados , Enfermedades de los Roedores , Enfermedades de las Ovejas , Simbióticos , Animales , Carcinogénesis , Carcinógenos/farmacología , Colon , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/prevención & control , Neoplasias del Colon/veterinaria , Helados/análisis , Masculino , Ratones , Leche , Ovinos
10.
Environ Toxicol ; 35(4): 518-527, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31804025

RESUMEN

Nonalcoholic steatohepatitis (NASH) is considered growing risk factor for hepatocellular carcinoma development in high-income countries. Diet- and chemically induced rodent models have been applied for the translational study of NASH-associated hepatocarcinogenesis due to their morphological and molecular similarities to the corresponding human disease. Arctium lappa L. (burdock) root tea has been extensively consumed in Traditional Chinese Medicine due to its potential therapeutic properties. Indeed, the bioactive compounds of A. lappa root, as the polyphenols, have already showed antioxidant and anti-inflammatory properties in different in vivo and in vitro bioassays. In this study, we investigated whether burdock root ethanolic extract (BRE) administration attenuates NASH-associated hepatocarcinogenesis. Eight-week-old male Wistar rats received choline-deficient high-fat diet for 8 weeks and multiple thioacetamide doses for 4 weeks in order to induce NASH and preneoplastic glutathione-S-transferase pi (GST-P)+ preneoplastic foci. Subsequently, rats were treated with BRE (100 or 200 mg/kg body weight) or vehicle by oral gavage for 2 weeks. BRE displayed high levels of chlorogenic and caffeic acids and BRE administration reduced total fatty acid and lipid hydroperoxide levels, while increasing the activities of antioxidant superoxide dismutase and catalase enzymes in the liver. Furthermore, burdock intervention diminished the size of GST-P+ remodeling preneoplastic lesions (PNLs) and displayed a trend on reducing hepatocyte proliferation (Ki-67) inside them. These findings suggest that short-term exposure to BRE alleviated remodeling PNL development in NASH-associated hepatocarcinogenesis.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Arctium/química , Neoplasias Hepáticas/prevención & control , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Lesiones Precancerosas/prevención & control , Animales , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Antioxidantes/metabolismo , Ácidos Cafeicos , Dieta Alta en Grasa/efectos adversos , Humanos , Neoplasias Hepáticas/patología , Masculino , Medicina Tradicional China , Enfermedad del Hígado Graso no Alcohólico/patología , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química , Lesiones Precancerosas/patología , Ratas , Ratas Wistar , Tioacetamida/toxicidad
11.
Food Chem Toxicol ; 121: 237-245, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30194994

RESUMEN

This study evaluated the possible protective effects of lyophilized açaí pulp (AP) in a colitis-associated carcinogenesis (CAC) rat model and the modifying effect of cyanidin 3-rutinoside (C3R) on the motility of RKO colon adenocarcinoma cells, using the wound healing assay. Male Wistar rats were induced to develop CAC using 1,2-dimethylhydrazine (DMH) and 2,4,6-trinitrobenzene acid (TNBS). Animals were randomly assigned to different groups that received basal diet or basal diet supplemented with 5.0% or 7.5% lyophilized AP. The findings indicate: 1) C3R (25 µM) has the potential to reduce RKO cell motility in vitro; 2) ingestion of lyophilized AP reduces the total number of aberrant crypt foci (ACF), ACF multiplicity, tumor cell proliferation and incidence of tumors with high grade dysplasia; 3) AP increases the gene expression of negative regulators of cell proliferation such as Dlc1 and Akt3, as well as inflammation (Ppara). Thus, lyophilized AP could exert a potential antitumor activity.


Asunto(s)
Antocianinas/farmacología , Movimiento Celular/efectos de los fármacos , Colitis/inducido químicamente , Neoplasias del Colon/etiología , Euterpe/química , Extractos Vegetales/farmacología , Animales , Antocianinas/administración & dosificación , Carotenoides/química , Carotenoides/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colitis/complicaciones , Neoplasias del Colon/prevención & control , Liofilización , Frutas/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Extractos Vegetales/química , Ratas , Ratas Wistar
12.
Arch Toxicol ; 92(8): 2607-2627, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29987408

RESUMEN

Liver fibrosis is the final common pathway for almost all causes of chronic liver injury. This chronic disease is characterized by excessive deposition of extracellular matrix components mainly due to transdifferentiation of quiescent hepatic stellate cell into myofibroblasts-like cells, which in turn is driven by cell death and inflammation. In the last few years, paracrine signaling through pannexin1 channels has emerged as a key player in the latter processes. The current study was set up to investigate the role of pannexin1 signaling in liver fibrosis. Wild-type and whole body pannexin1 knock-out mice were treated with carbon tetrachloride or subjected to bile duct ligation. Evaluation of the effects of pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, oxidative stress, inflammation and regenerative capacity. In parallel, to elucidate the molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. While pannexin1 knock-out mice treated with carbon tetrachloride displayed reduced collagen content, hepatic stellate cell activation, inflammation and hepatic regeneration, bile duct ligated counterparts showed increased hepatocellular injury and antioxidant enzyme activity with a predominant immune response. Gene expression profiling revealed a downregulation of fibrotic and immune responses in pannexin1 knock-out mice treated with carbon tetrachloride, whereas bile duct ligated pannexin1-deficient animals showed a pronounced inflammatory profile. This study shows for the first time an etiology-dependent role for pannexin1 signaling in experimental liver fibrosis.


Asunto(s)
Conexinas/genética , Cirrosis Hepática/etiología , Proteínas del Tejido Nervioso/genética , Animales , Conductos Biliares/cirugía , Tetracloruro de Carbono/toxicidad , Conexinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ligadura , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo/genética , Transducción de Señal/genética
13.
Int J Mol Sci ; 19(3)2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29534516

RESUMEN

Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5'-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.


Asunto(s)
Carbenoxolona/uso terapéutico , Conexina 43/antagonistas & inhibidores , Cirrosis Hepática/tratamiento farmacológico , Fragmentos de Péptidos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Carbenoxolona/administración & dosificación , Carbenoxolona/farmacología , Células Cultivadas , Conexina 43/administración & dosificación , Conexina 43/farmacología , Conexina 43/uso terapéutico , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/etiología , Masculino , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacología , Superóxido Dismutasa/metabolismo , Tioacetamida/toxicidad
14.
Food Chem Toxicol ; 107(Pt A): 27-36, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28634113

RESUMEN

Hexachlorobezene (HCB), a fungicide widely distributed in the environment, promotes the development of hepatocellular preneoplastic lesions (PNL) and tumors in rodents. In contrast, vitamin D3 (VD3) supplementation presents a potential role for the prevention/treatment of chronic liver diseases. Thus, we investigated whether VD3 supplementation attenuates the early stage of HCB-promoted hepatocarcinogenesis. Female Balb/C mice were injected a single dose of diethylnitrosamine (DEN, 50 mg/kg) at postnatal day 15. From day 40 onwards, mice were fed with a standard diet containing 0.02% HCB alone or supplemented with VD3 (10,000 or 20,000 IU/Kg diet) for 20 weeks. Untreated mice were fed just standard diet. After this period, mice were euthanized and liver and serum samples were collected. Compared to the untreated group, DEN/HCB treatment decreased total hepatic glutathione levels and glutathione peroxidase (GSH-Px) activity while increased lipid peroxidation, p65 protein expression, cell proliferation/apoptosis and the PNL development. In contrast, dietary VD3 supplementation enhanced vitamin D receptor (VDR) protein expression, total glutathione levels and GSH-Px activity while diminished lipid hydroperoxide levels. Also, VD3 supplementation decreased p65 protein expression, hepatocyte proliferation, the size and the liver area occupied by PNL. Therefore, our findings indicate that VD3 supplementation attenuates the early stage of HCB-promoted hepatocarcinogenesis.


Asunto(s)
Colecalciferol/administración & dosificación , Suplementos Dietéticos/análisis , Fungicidas Industriales/toxicidad , Hexaclorobenceno/toxicidad , Neoplasias Hepáticas Experimentales/prevención & control , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colecalciferol/análisis , Femenino , Fungicidas Industriales/metabolismo , Glutatión/metabolismo , Hexaclorobenceno/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/etiología , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
15.
Food Chem Toxicol ; 58: 68-76, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23597449

RESUMEN

This study investigated the protective effect of spray-dried açaí powder (AP) intake on colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) in male Wistar rats. After 4 weeks of DMH administrations, the groups were fed with standard diet, a diet containing 2.5% or 5.0% AP or a diet containing 0.2% N-acetylcysteine (NAC) for 10 weeks, using aberrant crypt foci (ACF) as the endpoint. Additionally, two groups were fed with standard diet or a diet containing 5.0% AP for 20 weeks, using colon tumors as the endpoint. In ACF assay, a reduction in the number of aberrant crypts (ACs) and ACF (1-3 AC) were observed in the groups fed with 5.0% AP (37% AC and 47% ACF inhibition, p=0.036) and 0.2% NAC (39% AC and 41% ACF inhibition, p=0.042). In tumor assay, a reduction in the number of invasive tumors (p<0.005) and tumor multiplicity (p=0.001) was observed in the group fed with 5.0% AP. Also, a reduction in tumor Ki-67 cell proliferation (p=0.003) and net growth index (p=0.001) was observed in the group fed with 5.0% AP. Therefore the findings of this study indicate that AP feeding may reduce the development of chemically-induced rat colon carcinogenesis.


Asunto(s)
1,2-Dimetilhidrazina/toxicidad , Arecaceae , Carcinogénesis , Carcinógenos/toxicidad , Neoplasias del Colon/prevención & control , Animales , Apoptosis , Proliferación Celular , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Conexina 43/metabolismo , Ratas , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...