Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Biol Macromol ; 248: 125739, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423445

RESUMEN

Wound regeneration with complete functions and skin appendages is still challenging in wound dressing application. Inspired by the efficient wound healing in the fetal environment, we developed a fetal milieu-mimicking hydrogel for accelerating wound healing simultaneously with hair follicle regeneration. To mimic the fetal extracellular matrix (ECM), which contains high content of glycosaminoglycans, hyaluronic acid (HA) and chondroitin sulfate (CS) were selected to fabricate hydrogels. Meanwhile, dopamine (DA) modification endowed hydrogels with satisfactory mechanical properties and multi-functions. The hydrogel encapsulated atorvastatin (ATV) and zinc citrate (ZnCit), namely HA-DA-CS/Zn-ATV, exhibited tissue adhesion, self-healing capacity, good biocompatibility, excellent anti-oxidant ability, high exudate absorption, and hemostasis property. In vitro results revealed that hydrogels exerted significant angiogenesis and hair follicle regeneration efficacy. In vivo results confirmed that hydrogels significantly promoted wound healing, and the closure ratio reached over 94 % after 14 days of hydrogels-treatment. The regenerated skin exhibited a complete epidermis, dense and ordered collagen. Furthermore, the number of neovessels and hair follicles in the HA-DA-CS/Zn-ATV group were 1.57- and 3.05-fold higher than those of the HA-DA-CS group. Thus, HA-DA-CS/Zn-ATV serves as multifunctional hydrogels for simulating the fetal milieu and achieving efficient skin reconstruction with hair follicle regrowth, exhibiting potential in clinical wound healing.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Hidrogeles/farmacología , Ácido Hialurónico/farmacología , Sulfatos de Condroitina/farmacología , Dopamina/farmacología , Cicatrización de Heridas , Folículo Piloso , Antibacterianos
3.
Acta Pharm Sin B ; 12(10): 3934-3951, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36213532

RESUMEN

The poor prognosis of triple negative breast cancer (TNBC) results from a lack of approved targeted therapies coupled with aggressive proliferation and metastasis, which is associated with high recurrence and short overall survival. Here we developed a strategy by employing tumor-targeted self-assembled nanoparticles to coordinately regulate BACH1 (BTB domain and CNC homology 1) and mitochondrial metabolism. The BACH1 inhibitor hemin and mitochondria function inhibitor berberine derivative (BD) were used to prepare nanoparticles (BH NPs) followed by the modification of chondroitin sulfate (CS) on the surface of BH NPs to achieve tumor targeting (CS/BH NPs). CS/BH NPs were found to be able to inhibit tumor migration and invasion by significantly decreasing the amounts of tumor cell metabolites, glycolysis and metastasis-associated proteins, which were related to the inhibition of BACH1 function. Meanwhile, decreased mitochondrial membrane potential, activated caspase 3/9 and increased ROS production demonstrated coordinated regulation of BACH1 and mitochondrial metabolism. In a xenograft mice model of breast cancer, CS/BH NPs significantly inhibited tumor growth and metastasis due to the synergetic effect of hemin and BD without showing obvious toxicities for major organs. In sum, the results of efficacy and safety experiments suggest potential clinical significance of the prepared self-assembled CS/BH nanoparticles for the treatment of TNBC.

4.
Nanoscale ; 13(13): 6605-6623, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33885540

RESUMEN

Mitochondria play a central role in cancer progression and tumor metastasis, and nanomedicines targeting mitochondria have emerged as a promising strategy for tumor therapy. However, mitochondria targeting strategies have not been widely explored in the inhibition of tumor metastasis, and they have disadvantages of complicated preparation, low drug loading, systemic toxicity of the carriers and poor accumulation at tumor sites. Here we firstly developed self-assembled nanodrugs with a high drug loading (∼68%) comprised of a berberine derivative (Ber) and doxorubicin (Dox) by a simple nano-precipitation method, which successfully altered the target location of Dox from the nucleus to mitochondria and therefore inhibited the proliferation, invasion and migration of MDA-MB-231 cells by triggering cell apoptosis. The surface of nanodrugs was modified with DSPE-PEG-folic acid (DSPE-PEG-FA) and hyaluronic acid (HA) for precise tumor recognition and enhanced accumulation (HA-FA-BD NDs). Upon arrival at the tumor site with the help of the enhanced permeability and retention (EPR) effect, the partial degradation of HA by hyaluronidase (HAase) at the tumor site allowed the partial exposure of the positively charged FA-BD NDs to the cells, then nanodrugs would accumulate and enter tumor cells by dual binding to both folic acid (FA) and CD-44 receptors. Once internalized into lysosomes, both the HA outer shell and DSPE-PEG-FA of nanodrugs were degraded or decomposed completely to expose positively charged BD NDs. Driven by delocalized lipophilic cations, nanodrugs could escape from lysosomes and reach mitochondria to induce a cascade reaction and finally cell apoptosis, as well as suppressing matrix metalloprotease (MMP)-2 and -9 activities and finally cell migration and invasion. In a xenograft mice model of MDA-MB-231 breast cancer cells, the nanodrugs repaired the defects in Mfn 1/Drp 1 mitochondrial proteins, suppressed the activity of MMP-2 and -9, and significantly inhibited tumor cell proliferation and pulmonary metastasis. Our study showed a promising strategy for the treatment of metastatic breast cancer by targeting mitochondria followed by enhanced apoptosis.


Asunto(s)
Antineoplásicos , Berberina , Nanopartículas , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Humanos , Ratones , Ratones Endogámicos BALB C , Mitocondrias , Nanomedicina
5.
ACS Appl Mater Interfaces ; 13(15): 18077-18088, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33830730

RESUMEN

Protein and peptide drugs orally suffer from extremely low bioavailability principally for the complicated gastrointestinal environment along with the difficulty of passing through the mucus layer and the underlying epithelium. In our work, we fabricated mesoporous silica nanoparticles with modification groups (MSN-NH2@COOH/CPP5) that effectively penetrated the mucus layer and passed through the intestinal epithelium by mimicking the virus surface. Naked nanoparticles were prepared with inner pores of 6 nm diameter to allow efficient insulin loading and coated with the cationic cell-penetrating KLPVM peptide and the anionic glutaric anhydride to yield hydrophilic MSN-NH2@COOH/CPP5 with a ζ-potential of -0.49 mV. The apparent permeability coefficient of virus-mimicking nanoparticles was 14.61 × 10-5 cm/s. The virus-mimicking nanoparticles showed dramatically lower binding to mucin and faster penetration of the mucus layer than positively charged nanoparticles (MSN@NH2) with a ζ-potential of +35.00 mV. The KLPVM peptide enhanced the uptake of MSN-NH2@COOH/CPP5 by coculturing Caco-2 and E12 cells as an intestinal epithelium model. MSN-NH2@COOH/CPP5 enhanced apical-to-basal transcytosis for being internalized primarily through caveolae-mediated endocytosis. Indeed, for MSN-NH2@COOH/CPP5, the transepithelial transport of the Caco-2 cell monolayer was 2.4-fold higher than MSN@NH2 and 2.0-fold higher than MSN-NH2@COOH. In vitro, loading insulin into nanoparticles maintained the bioactivity of the protein under simulated intestinal conditions. Insulin loaded into MSN-NH2@COOH/CPP5 reduced the diabetic rats' blood glucose level by nearly 50%. The bioavailability of insulin encapsulated in the MSN-NH2@COOH/CPP5 nanoparticles was 2.1-fold more than insulin when administered directly into the jejunum. Nanoparticles with modifications indicated no significant toxicity in in vitro or in vivo preliminary studies. The obstacles of the mucus layer and intestinal epithelium may be effectively conquered by these virus-mimicking nanoparticles for oral delivery of protein and peptide drugs.


Asunto(s)
Materiales Biomiméticos/química , Insulina/metabolismo , Mucosa Intestinal/metabolismo , Moco/metabolismo , Nanopartículas/química , Dióxido de Silicio/química , Virus , Administración Oral , Secuencia de Aminoácidos , Animales , Células CACO-2 , Portadores de Fármacos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Insulina/administración & dosificación , Insulina/química , Absorción Intestinal , Oligopéptidos/química , Porosidad , Ratas
6.
Pharmaceutics ; 12(10)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050126

RESUMEN

"Off-targeting" and receptor density expressed at the target sites always compromise the efficacy of the nanoparticle-based drug delivery systems. In this study, we isolated different cell membranes and constructed cell membrane-cloaked biogenic nanoparticles for co-delivery of antitumor paclitaxel (PTX) and multidrug resistance (MDR)-modulator disulfiram (DSF). Consequently, MDR cancer cell membrane (A549/T)-coated hybrid nanoparticles (A549/T CM-HNPs) selectively recognized the source cells and increased the uptake by ninefold via the homotypic binding mechanism. Moreover, the A549/T CM-HNPs sensitized MDR cells to PTX by suppressing P-glycoprotein (P-gp) activity by 3.2-fold and induced effective apoptosis (70%) in homologous A549/T cells. Cell-membrane coating based on the "homotypic binding" is promising in terms of promoting the accumulation of chemotherapeutics in MDR cells and killing them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...