Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 255: 119134, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751002

RESUMEN

The deep removal of organic pollutants is challenging for coagulation technology in drinking water and wastewater treatment plants to satisfy the rising water standards. Iron (III) chloride (FeCl3) is a popular inorganic coagulant; although it has good performance in removing the turbidity (TB) in water at an alkaline medium, it cannot remove dissolved pollutants and natural organic matter such as humic acid water solution. Additionally, its hygroscopic nature complicates determining the optimal dosage for effective coagulation. Biochar (BC), a popular adsorbent with abundant functional groups, porous structure, and relatively high surface area, can adsorb adsorbates from water matrices. Therefore, combining BC with FeCl3 presents a potential solution to address the challenges associated with iron chloride. Consequently, this study focused on preparing and characterizing a novel biochar/ferric chloride-based coagulant (BC-FeCl3) for efficient removal of turbidity (TB) and natural organic matter, specifically humic acid (HA), from synthetic wastewater. The potential solution for the disposal of produced sludge was achieved by its recovering and recycling, then used in adsorption of HA from aqueous solution. The novel coagulant presented high TB and HA removal within 10 min of settling period at pH solution of 7.5. Furthermore, the recovered sludge presented a good performance in the adsorption of HA from aqueous solution. Adsorption isotherm and kinetics studies revealed that the Pseudo-second-order model best described kinetic adsorption, while the Freundlich model dominated the adsorption isotherm.


Asunto(s)
Carbón Orgánico , Cloruros , Compuestos Férricos , Sustancias Húmicas , Aguas Residuales , Sustancias Húmicas/análisis , Carbón Orgánico/química , Adsorción , Cloruros/química , Compuestos Férricos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
2.
ACS Appl Mater Interfaces ; 16(22): 28664-28672, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787643

RESUMEN

Transition metal oxides are widely pursued as potent electrocatalysts for the oxygen evolution reaction (OER). However, single-metal chromium catalysts remain underexplored due to their intrinsic activity limitations. Herein, we successfully synthesize mixed-valence, nitrogen-doped Cr2O3/CrO3/CrN@NC nanoelectrocatalysts via one-step targeted pyrolysis techniques from a binuclear Cr-based complex (Cr2(Salophen)2(CH3OH)2), which is strategically designed as a precursor. Comprehensive pyrolysis mechanisms were thoroughly delineated by using coupled thermogravimetric analysis and mass spectrometry (TG-MS) alongside X-ray diffraction. Below 800 °C, the generation of a reducing atmosphere was noted, while continuous pyrolysis at temperatures exceeding 800 °C promoted highly oxidized CrO3 species with an elevated +6 oxidation state. The optimized catalyst pyrolyzed at 1000 °C (Cr2O3/CrO3/CrN@NCs-1000) demonstrated remarkable OER activity with a low overpotential of 290 mV in 1 M KOH and excellent stability. Further density functional theory (DFT) calculations revealed a much smaller reaction energy barrier of CrO3 than the low oxidation state species for OER reactivity. This work reveals fresh strategies for rationally engineering chromium-based electrocatalysts and overcoming intrinsic roadblocks to enable efficient OER catalysis through a deliberate oxidation state and compositional tuning.

3.
Bioresour Technol ; 402: 130787, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703955

RESUMEN

Slow dissolution/hydrolysis of insoluble/macromolecular organics and poor sludge filterability restrict the application potential of anaerobic membrane bioreactor (AnMBR). Bubble-free membrane microaeration was firstly proposed to overcome these obstacles in this study. The batch anaerobic digestion tests feeding insoluble starch and soluble peptone with and without microaeration showed that microaeration led to a 65.7-144.8% increase in methane production and increased critical flux of microfiltration membrane via driving the formation of large sludge flocs and the resultant improvement of sludge settleability. The metagenomic and bioinformatic analyses showed that microaeration significantly enriched the functional genes and bacteria for polysaccharide and protein hydrolysis, microaeration showed little negative effects on the functional genes involved in anaerobic metabolisms, and substrate transfer from starch to peptone significantly affected the functional genes and microbial community. This study demonstrates the dual synergism of microaeration to enhance the dissolution/hydrolysis/acidification of insoluble/macromolecular organics and sludge filterability for AnMBR application.


Asunto(s)
Reactores Biológicos , Filtración , Membranas Artificiales , Aguas del Alcantarillado , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Anaerobiosis , Filtración/métodos , Metano/metabolismo , Hidrólisis , Almidón/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38561530

RESUMEN

Biochar has effect on phosphorus adsorption, release, and transformation. This study compared the influence of biochar derived from animal (AB) and plant (PB) during paper mill sludge composting. Results indicated AB not only accelerated sludge decomposition but also had significantly higher levels of available phosphorus (AP) than PB and CK (no biochar), with AP contents in the order of AB > PB > CK. Compared to CK, AB was found to increase the relative abundance of thermophilic bacteria, and PB diversified the microbial community. Based on Pearson and RDA results, TOC/TN ratio (C/N) and organic matter (OM) explained above 50% of the variance in microbial community and phosphorus fractions. Thermophilic bacteria with high levels of OM and C/N promoted the conversion among labile and moderately labile organic phosphorus, moderately labile inorganic phosphorus, and AP. Biochar could enhance the AP conversion pathway, leading to increased levels of AP.

5.
Environ Res ; 249: 118416, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316391

RESUMEN

Microplastics (Mps) have emerged as a pervasive environmental concern, with their presence detected not only in freshwater ecosystems but also in drinking and bottled water sources. While extensive research has centered on understanding the origins, migration patterns, detection techniques, and ecotoxicological impacts of these contaminants, there remains a notable research gap about the strategies for Mps removal. This study reviews existing literature on chemical approaches for mitigating microplastic contamination within wastewater systems, focusing on coagulation precipitation, electrocoagulation, and advanced oxidation methods. Each approach is systematically explored, encompassing their respective mechanisms and operational dynamics. Furthermore, the comparative analysis of these three techniques elucidates their strengths and limitations in the context of MPs removal. By shedding light on the intricate mechanisms underlying these removal methods, this review contributes to the theoretical foundation of microplastic elimination from wastewater and identifies future research trajectories and potential challenges.


Asunto(s)
Microplásticos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Aguas Residuales/análisis , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
6.
Int J Biol Macromol ; 257(Pt 2): 128707, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101663

RESUMEN

The proper management of phosphorus (P) from wastewater is crucial for sustainable development consideration. Herein, we developed a strategy which combines adsorption via tailored adsorbents and electrochemically-driven struvite precipitation (ESP) for P recovery. Novel polydopamine-modified Ce-MOF/chitosan composite beads (PDA@Ce-MOF-CS) were prepared by a facile in situ growth of Ce-MOF crystals incorporated natural polymers and PDA coating. The physicochemical properties of PDA@Ce-MOF-CS were characterized. Both batch and fixed-bed column experiments were conducted to evaluate its adsorption performances. Representatively, PDA@Ce-MOF-CS performed good selectivity for P removal and exhibited a maximum adsorption capacity of 161.13 mg P/g at pH 3 and 318 K. Meanwhile, the developed adsorbent showed great reusability after ten regeneration cycles as well as good adsorption stability. The dominant mechanism for efficient P adsorption included electrostatic attraction, surface precipitation and ligand exchange. Interestingly, PDA@Ce-MOF-CS exhibited a remarkable adsorption capacity of 92.86 mg P/g by treating real P-rich electroplating wastewater, and the desorbed P in the eluate could be effectively recovered and converted into a solid fertilizer as struvite via ESP. Overall, this work provided a new research direction for P recovery from wastewater as struvite by combined technologies with the help of macroscopic MOF architectures.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Estruvita , Fósforo , Quitosano/química , Aguas Residuales , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Fosfatos/química
7.
Environ Sci Technol ; 57(45): 17649-17658, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37910031

RESUMEN

Cyanobacteria fouling in ultrafiltration (UF) drinking water treatment poses a significant threat to the stability and sustainability of the process. Both phycocyanin found in cyanobacteria and the polymer membrane exhibit strong fluorescence, which could be readily detected using front-face excitation-emission matrix (FF-EEM) spectroscopy. In this study, FF-EEM was employed for the nondestructive and in situ characterization of algae fouling evolution in UF, while also analyzing fouling mechanisms and reversibility. The results indicated that phycocyanin fluorescence on the membrane surface showed a linear correlation with the specific algal cell count on the membrane surface before reaching saturation. As fouling progressed, membrane fluorescence decreased, which was associated with the extent of the surface coverage on the membrane. The plateau in membrane fluorescence indicated full coverage, coinciding with the cake filtration mechanism, cake compression, and deterioration of fouling reversibility. These findings highlight the promise of FF-EEM as a valuable tool for monitoring and evaluating fouling of cyanobacteria in UF systems.


Asunto(s)
Cianobacterias , Purificación del Agua , Ultrafiltración/métodos , Ficocianina , Membranas Artificiales , Filtración , Purificación del Agua/métodos
8.
Membranes (Basel) ; 13(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37233524

RESUMEN

Ultrafiltration (UF) has been proven effective in removing algae during seasonal algal blooms, but the algal cells and the metabolites can induce severe membrane fouling, which undermines the performance and stability of the UF. Ultraviolet-activated sulfite with iron (UV/Fe(II)/S(IV)) could enable an oxidation-reduction coupling circulation and exert synergistic effects of moderate oxidation and coagulation, which would be highly preferred in fouling control. For the first time, the UV/Fe(II)/S(IV) was systematically investigated as a pretreatment of UF for treating Microcystis aeruginosa-laden water. The results showed that the UV/Fe(II)/S(IV) pretreatment significantly improved the removal of organic matter and alleviated membrane fouling. Specifically, the organic matter removal increased by 32.1% and 66.6% with UV/Fe(II)/S(IV) pretreatment for UF of extracellular organic matter (EOM) solution and algae-laden water, respectively, while the final normalized flux increased by 12.0-29.0%, and reversible fouling was mitigated by 35.3-72.5%. The oxysulfur radicals generated in the UV/S(IV) degraded the organic matter and ruptured the algal cells, and the low-molecular-weight organic matter generated in the oxidation penetrated the UF and deteriorated the effluent. The over-oxidation did not happen in the UV/Fe(II)/S(IV) pretreatment, which may be attributed to the cyclic redox Fe(II)/Fe(III) coagulation triggered by the Fe(II). The UV-activated sulfate radicals in the UV/Fe(II)/S(IV) enabled satisfactory organic removal and fouling control without over-oxidation and effluent deterioration. The UV/Fe(II)/S(IV) promoted the aggregation of algal foulants and postponed the shift of the fouling mechanisms from standard pore blocking to cake filtration. The UV/Fe(II)/S(IV) pretreatment proved effective in enhancing the UF for algae-laden water treatment.

9.
Water Res ; 240: 120080, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257292

RESUMEN

Resources recovery from landfill leachate (LFL) has been attracting growing attention instead of merely purifying the wastewater. An integrated two-stage membrane distillation (ITMD) was proposed to simultaneously purify LFL and recover ammonia in this study. The results showed that organics could be always effectively rejected by the ITMD regardless of varying feed pH, with COD removal higher than 99%. With feed pH increased from 8.64 to 12, the ammonia migration (50-100%) and capture (36-75%) in LFL were considerably enhanced, boosting the separated ammonia enrichment to 1.3-1.7 times due to the improved ammonium diffusion. However, the corresponding membrane flux of the first MD stage decreased from 13.7 to 10.5 L/m2·h. Elevating feed pH caused the deprotonation of NOM and its binding with inorganic ions, constituting a complex fouling layer on the membrane surface in the first MD stage. In contrast, the membrane permeability and fouling of the second MD were not affected by feed pH adjustment because only volatiles passed through the first MD. More importantly, it was estimated that ITMD could obtain high-quality water and recover high-purity ammonium from LFL with relatively low ammonium concentration at an input cost of $ 2-3/m3, which was very competitive with existing techniques. These results demonstrated that the ITMD can be a valuable candidate strategy for simultaneous water purification and nutrient recovery from landfill leachate.


Asunto(s)
Compuestos de Amonio , Contaminantes Químicos del Agua , Purificación del Agua , Amoníaco , Destilación , Agua , Purificación del Agua/métodos , Membranas Artificiales
10.
Int J Biol Macromol ; 231: 123289, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36657545

RESUMEN

This paper reports the preparation of calcium alginate gels-functionalized PUF decorated with AgNPs (CA/PUF@Ag) by in situ reduction of Ag+ ions to form AgNPs with weakly reducing glycerol in CA/PUF composite. The water-adsorbing capacity, chemical structure, crystalline nature, elemental composition and morphologies of the composite were characterized. The Ag release behavior of CA/PUF@Ag was investigated. The inhibition zone test, time-dependent co-culture assay, test tube test, and antibacterial filtration experiment with Escherichia coli as an indicator of bacterial contamination were conducted to explore the antimicrobial efficacy. Results indicated that the CA/PUF@Ag prepared at 0.25 % w/v of SA could absorb more water with a higher swelling ratio of 8.0 g/g than that of PUF@Ag (6.0 g/g), which was subsequently squeezed by minimal pressure stimuli. The CA/PUF@Ag had a larger initial AgNPs loading amount (8.48 mg/g), lower Ag release concentration (44.35 µg/L) and lower Ag release rate (0.27 %) after 14 days tests than those of PUF@Ag (7.93 mg/g, 80.87 µg/L and 0.60 % respectively). The CA/PUF@Ag was highly reusable because bacterial cells in the squeezed water recovered from the composite were completely inactivated over five cycles of operation, and exhibited good antibacterial efficacy as an antibacterial filter in a flow test.


Asunto(s)
Nanopartículas del Metal , Agua , Desinfección/métodos , Plata/química , Antibacterianos/farmacología , Nanopartículas del Metal/química , Escherichia coli , Geles
11.
Bioresour Technol ; 369: 128284, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36368486

RESUMEN

The effective inhibition of nitrite-oxidizing bacteria (NOB) is widely acknowledged to be a critical issue for mainstream short-cut biological nitrogen removal. This study demonstrated a stable mainstream nitritation by implementing light irradiation. A sequencing batch reactor with ultraviolet-A (UVA) irradiation was operated for 250 days, and a high nitrite accumulation ratio was achieved and stabilized at about 90 %. UVA irradiation also positively impacts denitrification activity, with total nitrogen removal up to 63 %. Microbial community analysis confirmed that the UVA effectively and stably decreased the abundance of Nitrospira (the only detected NOB) from 6.0 % to 0.1 %, while it showed no effect on Nitrosomonas. The enriched genus Rhodocyclaceae was the major contributor to the increase in denitrification activity in the light-induced nitritation system. The proposed UVA irradiation strategy has the potential to be integrated with an anoxic/aerobic (A/O) or integrated fixed-film activated sludge (IFAS) process for achieving mainstream short-cut biological nitrogen removal.


Asunto(s)
Compuestos de Amonio , Nitritos , Oxidación-Reducción , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Nitrógeno , Bacterias , Desnitrificación
12.
Membranes (Basel) ; 12(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36005725

RESUMEN

It is of great importance to quantitatively characterize feed fouling potential for the effective and efficient prevention and control of reverse osmosis membrane fouling. A gradient filtration method with microfiltration (MF 0.45 µm) → ultrafiltration (UF 100 kDa) → nanofiltration (NF 300 Da) was proposed to extract the cake layer fouling index, I, of different feed foulants in this study. MF, UF, and NF showed high rejection of model suspended solids (kaolin), colloids (sodium alginate and bovine serum albumin), and dissolved organic matters (humic acid) during constant-pressure individual filtration tests, where the cake layer was the dominant fouling mechanism, with I showing a good linear positive correlation with the foulant concentration. MF → UF → NF gradient filtration tests of synthetic wastewater (i.e., model mixture) showed that combined models were more effective than single models to analyze membrane fouling mechanisms. For each membrane of gradient filtration, I showed a positive correlation with the targeted foulant concentration. Therefore, a quantitative assessment method based on MF → UF → NF gradient filtration, the correlation of combined fouling models, and the calculation of I would be useful for characterizing the fouling potentials of different foulants. This method was further successfully applied for characterizing the fouling potential of real wastewater (i.e., sludge supernatant from a membrane bioreactor treating dyeing and finishing wastewater).

13.
Membranes (Basel) ; 12(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35877907

RESUMEN

Membrane bioreactors have been widely used in textile wastewater treatment. Intensive chemical cleaning is indispensable in the MBR for textile wastewater treatment due to the severe membrane fouling implied. This work investigated the aging of three different membranes, polyvinylidene fluoride (PVDF), polyether sulfone (PES), and polytetrafluoroethylene (PTFE), in the MBRs for textile wastewater treatment. Pilot-scale MBRs were operated and the used membrane was characterized. Batch chemical soaking tests were conducted to elucidate the aging properties of the membranes. The results indicated that the PVDF membrane was most liable to the chemical cleaning, and the PES and PTFE membranes were rather stable. The surface hydrophobicity of the PVDF increased in the acid aging test, and the pore size and pure water flux decreased due to the elevated hydrophobic effect; alkaline oxide aging destructed the structure of the PVDF membrane, enlarged pore size, and increased pure water flux. Chemical cleaning only altered the interfacial properties (hydrophobicity and surface zeta potential) of the PES and PTFE membranes. The fluoro-substitution and the dehydrofluorination of the PVDF, chain scission of the PES molecules, and dehydrofluorination of the PTFE were observed in aging. A chemically stable and anti-aging membrane would be of great importance in the MBR for textile wastewater treatment due to the intensive chemical cleaning applied.

14.
Environ Sci Pollut Res Int ; 29(56): 85482-85491, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35796928

RESUMEN

Chironomids are abundant insects in freshwater ecosystems and lay in still or slow-moving water. The walls of sedimentation tanks in drinking water treatment plants (DWTP) provide such laying habitat, which can lead to larval outbreaks in plant effluent. While chironomid larvae are often associated with poor hygiene, effective methods to control outbreaks are needed. Here, we assessed the effect of ultrasound treatment on Chironomus kiiensis' eggs. The mortality rate of eggs was examined after ultrasound treatment, and the protein content (heat shock protein 70 and hemoglobin) and enzymatic activities of acetylcholinesterase, cytochrome P450, and glutathione S-transferases involved in the ultrasound-induced stress response were analyzed before and after treatment. COMSOL software was also used to examine the characteristics of the ultrasonic field, including frequency, power, exposure distance, and time. Higher egg mortality was observed at lower frequencies. At 28 kHz, 450 W, 15-mm exposure distance, and 75-s exposure time, 72.4% of eggs showed apoptosis after exposure. At higher frequencies (68 kHz), mortality decreased to 50.9%. Exposure time and distance also significantly affected egg mortality. From the geometric models, it could be seen that C. kiiensis' eggs sustained much greater acoustic pressure (2379 Pa) with 28-kHz exposure than that with 68-kHz exposure (422 Pa); however, the propagation distance was greater at the higher frequency. The hydraulic shear force effect of the ultrasonic radiation appeared to be the primary factor in egg mortality. We expected that array of ultrasonic transducers embedded in the walls of water treatment plants could be effective in killing Chironomus' eggs and highlight the potential for ultrasound as an effective treatment for the prevention of Chironomus outbreaks in treatment plant effluents.


Asunto(s)
Chironomidae , Purificación del Agua , Animales , Acetilcolinesterasa , Ecosistema , Larva
15.
Environ Sci Pollut Res Int ; 29(19): 27977-27987, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34981387

RESUMEN

This study investigated the influence of biochar on temperature, pH, organic matter (OM), seed germination index (GI), the fluorescent components of dissolved organic matter (DOM), and bioavailability of DTPA-extractable Cu and Cd during composting and analyzed the relation between DTPA-extractable metals with pH, OM, and the fluorescent components of DOM. Results showed that the addition of biochar shortened the thermophilic phase, reduced the pH at maturation period, accelerated the decomposition of OM, and raised GI. Besides, it promoted the formation of components with benzene ring in FA and HyI and the degradation of protein-like organic-matters in FA and HA, which was mainly related with the decrease of DTPA-extractable Cd and the increase of DTPA-extractable Cu. After composting, DTPA-extractable Cd in pile A and pile B were decreased by 37.15% and 27.54%, respectively, while the bioavailability of Cu in pile A and pile B was increased by 65.71% and 68.70%, respectively. All these findings demonstrate positive and negative impact produced by biochar into various heavy metals and the necessary of optimization measures with biochar in sediment composting.


Asunto(s)
Compostaje , Metales Pesados , Cadmio , Carbón Orgánico/química , Materia Orgánica Disuelta , Metales Pesados/análisis , Ácido Pentético , Suelo/química
16.
J Hazard Mater ; 422: 126863, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34416684

RESUMEN

In the present study, glutaraldehyde was used as a hydrophobic modifier to crosslink polyvinyl alcohol (PVA), and copper ion was immobilized by sodium alginate (SA). Polyvinyl alcohol-copper alginate (PVA-CA) gel beads were prepared by a one-step process, and were used to adsorb and remove tetracycline (TC) from an aqueous solution. The beads were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) measurement, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The adsorption experiment showed that the optimal pH value of the beads was 5, and that their adsorption met pseudo-second-order kinetic and Langmuir isothermal models. The adsorption thermodynamics experiment showed that the adsorption process was spontaneous and endothermic. Under optimal adsorption conditions, the maximum adsorption capacity for TC of the beads was 231.431 mg/g, which was much higher than that of a single copper alginate matrix. After 5 adsorption-desorption cycles, the adsorption capacity remained high. FTIR and X-ray photoelectron spectroscopy (XPS) revealed that the cation bonding bridge reaction was the main driving force behind the adsorption mechanism. Compared with other reported adsorption materials, the PVA-CA gel beads have high adsorption capacity, a simple preparation process, and excellent recovery performance.


Asunto(s)
Alcohol Polivinílico , Contaminantes Químicos del Agua , Adsorción , Alginatos , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Tetraciclina , Contaminantes Químicos del Agua/análisis
17.
Chemosphere ; 286(Pt 2): 131689, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34352546

RESUMEN

Quorum quenching (QQ), which disrupts bacterial communication and biofilm formation, could alleviate biofouling in MBR. QQ bio-stimulus possessing similar conserved moiety as the signal molecule could promote indigenous QQ bacteria, and thus successfully alleviate biofouling in MBR. However, efficient biostimulant has been barely explored for QQ enhancement in activated sludge system. This study extensively enumerated the potential QQ bio-stimuli, and examined their efficacy on QQ promotion for activated sludge. Moreover, the effect of the QQ consortia on fouling mitigation was also investigated. The results indicated that gamma-caprolactone (GCL), d-xylonic acid-1,4-lactone (XAL), gamma-heptalactone (GHL), urea, and acetamide proved effective in promoting AHLs inactivating activity of activated sludge. GCL, XAL, and GHL intensified the lactonase activity, while urea and acetamide augmented acylase activity. While coupled with beads entrapment, GCL consortia beads, XAL consortia beads, and urea consortia beads effectively disrupted quorum sensing (QS) and controlled membrane fouling in MBR. This work found out several optional bio-stimuli valid for tuning QQ in activated sludge system, and provided easily available and economical alternatives for QQ biostimulation, meanwhile the proposed QQ-MBR approach through QQ biostimulation and consortia entrapment also proved effective and practical.


Asunto(s)
Incrustaciones Biológicas , Percepción de Quorum , Bacterias , Incrustaciones Biológicas/prevención & control , Reactores Biológicos , Membranas Artificiales , Aguas del Alcantarillado
18.
J Hazard Mater ; 416: 125850, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492801

RESUMEN

This study aims to unravel the microbial responses to Cr(VI) stress in anaerobic ammonium oxidation (anammox) reactor. The result showed that anammox process could tolerate 2 mg/L Cr(VI) after acclimation, while 5 mg/L Cr(VI) stress resulted in significant inhibition on anammox bacterial activity. Ca. Jettenia was the predominant anammox genus, whose abundance showed a decreasing tendency with increasing Cr(VI) dosage. Cr(VI) addition resulted in significant and irreversible changes in microbial community structure, and increased the relative influence of stochastic processes on community assembly. Furthermore, rare subcommunity contributed greatly to biodiversity of whole community (90.35%), while abundant subcommunity were more similar to the whole community. Importantly, Cr(VI) exposure caused greater variations in rare subcommunity compared with abundant one, indicating that rare taxa were more sensitive to Cr(VI) stress. This was further confirmed by ABT model, which showed higher relative influence of Cr(VI) on rare subcommunity. In addition, results suggested that rare taxa play essential roles in whole community stability, because of their great contribution to species richness and community variations, and keystone roles in ecosystem network. Moreover, network analysis showed that conditionally rare taxa frequently and positively interacted with abundant taxa, which may contribute to the community resilience to Cr(VI) stress.


Asunto(s)
Cromo , Microbiota , Bacterias/genética , Biodiversidad , Cromo/toxicidad , Oxidación-Reducción
19.
Membranes (Basel) ; 11(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34436357

RESUMEN

Anaerobically treated swine wastewater contains large amounts of orthophosphate phosphorus, ammonium nitrogen and organic substances with potential nutrients recovery via struvite electrochemical precipitation post-treatment. Lab-scale batch experiments were systematically conducted in this study to investigate the effects of initial pH, current density, organic substances upon nutrients removal, and precipitates quality (characterized by X-ray diffraction, scanning electron microscopy and element analysis via acid dissolution method) during the struvite electrochemical precipitation process. The optimal conditions for the initial pH of 7.0 and current density of 4 mA/cm2 favoured nutrients removal and precipitates quality (struvite purity of up to 94.2%) in the absence of organic substances. By contrast, a more adverse effect on nutrients removal, morphology and purity of precipitates was found by humic acid than by sodium alginate and bovine albumin in the individual presence of organic substances. Low concentration combination of bovine albumin, sodium alginate, and humic acid showed antagonistic inhibition effects, whereas a high concentration combination showed the accelerating inhibition effects. Initial pH adjustment from 7 to 8 could effectively mitigate the adverse effects on struvite electrochemical precipitation under high concentration combined with organic substances (500 mg/L bovine albumin, 500 mg/L sodium alginate, and 1500 mg/L humic acid); this may help improve struvite electrochemical precipitation technology in practical application for nutrients recovery from anaerobically treated swine wastewater.

20.
ACS Omega ; 6(9): 6240-6251, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33718714

RESUMEN

This work dealt with a potential and effective method to reuse modified alginate beads after the removal of Cu(II) ions for efficient adsorption of tetracycline (TC) from aqueous solutions. The modified alginate beads were fabricated by a polyacrylamide (PAM) network interpenetrated in alginate-Ca2+ network (PAM/CA) decorated with polyethylene glycol as a pore-forming agent. The porous PAM/CA was characterized using scanning electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis. The adsorption kinetics, isotherms, adsorption stability, and reusability studies of the adsorbent toward Cu(II) ions were scrutinized. The column performance of porous PAM/CA was tested with Cu(II)-containing electroplating wastewater. After Cu(II) adsorption, the Cu(II)-adsorbed PAM/CA (PAM/CA@Cu) was applied to remove TC from aqueous solutions without any regeneration process. The effects of pH, initial TC concentration, ionic strength, and coexisting ions on the adsorption were also discussed in detail. Compared with many reported adsorbents, the PAM/CA@Cu exhibited an excellent adsorption performance toward TC with a maximum adsorption capacity of 356.57 mg/g predicted by the Langmuir model at pH 5.0 and 30 °C with the absence of coexisting ions. The possible adsorption mechanism of TC onto the PAM/CA@Cu was revealed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...