Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
JMIR Cardio ; 8: e54801, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587880

RESUMEN

BACKGROUND: Short-term blood pressure variability (BPV) is associated with arterial stiffness in patients with hypertension. Few studies have examined associations between arterial stiffness and digital home BPV over a mid- to long-term time span, irrespective of underlying hypertension. OBJECTIVE: This study aims to investigate if arterial stiffness traits were associated with subsequent mid- to long-term home BPV in the electronic Framingham Heart Study (eFHS). We hypothesized that higher arterial stiffness was associated with higher home BPV over up to 1-year follow-up. METHODS: At a Framingham Heart Study research examination (2016-2019), participants underwent arterial tonometry to acquire measures of arterial stiffness (carotid-femoral pulse wave velocity [CFPWV]; forward pressure wave amplitude [FWA]) and wave reflection (reflection coefficient [RC]). Participants who agreed to enroll in eFHS were provided with a digital blood pressure (BP) cuff to measure home BP weekly over up to 1-year follow-up. Participants with less than 3 weeks of BP readings were excluded. Linear regression models were used to examine associations of arterial measures with average real variability (ARV) of week-to-week home systolic (SBP) and diastolic (DBP) BP adjusting for important covariates. We obtained ARV as an average of the absolute differences of consecutive home BP measurements. ARV considers not only the dispersion of the BP readings around the mean but also the order of BP readings. In addition, ARV is more sensitive to measurement-to-measurement BPV compared with traditional BPV measures. RESULTS: Among 857 eFHS participants (mean age 54, SD 9 years; 508/857, 59% women; mean SBP/DBP 119/76 mm Hg; 405/857, 47% hypertension), 1 SD increment in FWA was associated with 0.16 (95% CI 0.09-0.23) SD increments in ARV of home SBP and 0.08 (95% CI 0.01-0.15) SD increments in ARV of home DBP; 1 SD increment in RC was associated with 0.14 (95% CI 0.07-0.22) SD increments in ARV of home SBP and 0.11 (95% CI 0.04-0.19) SD increments in ARV of home DBP. After adjusting for important covariates, there was no significant association between CFPWV and ARV of home SBP, and similarly, no significant association existed between CFPWV and ARV of home DBP (P>.05). CONCLUSIONS: In eFHS, higher FWA and RC were associated with higher mid- to long-term ARV of week-to-week home SBP and DBP over 1-year follow-up in individuals across the BP spectrum. Our findings suggest that higher aortic stiffness and wave reflection are associated with higher week-to-week variation of BP in a home-based setting over a mid- to long-term time span.

2.
Environ Res ; 249: 118358, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325777

RESUMEN

Increasing the electron-hole recombination rate in g-C3N4 can effectively improve its photocatalytic performance. In this work, NiCoP/g-C3N4 (NCP/PCN) composites with ohmic junction were formed by embedding granular NiCoP in irregularly porous g-C3N4. There was almost no barrier between the metal and the semiconductor in ohmic junction, which made it easier for electrons to slip from PCN to NCP along the curved energy band, and NCP acted as an electron collector to rapidly capture the slipping electrons. In addition, porous g-C3N4 prepared by supramolecular self-assembly could provide a shorter diffusion path for electrons. Thus, the electron-hole was effectively separated and the photocatalytic performance was improved. The band electronic structure and existence of ohmic junction in 7-NCP/PCN composite were demonstrated by XPS, ESR and DFT calculation. Finally, a reasonable photocatalytic degradation mechanism and possible tetracycline degradation path were proposed. This work has significant potential for providing an effective method for the design of non-precious metal photocatalysts.


Asunto(s)
Luz , Tetraciclina , Tetraciclina/química , Catálisis , Contaminantes Químicos del Agua/química , Compuestos de Nitrógeno/química , Procesos Fotoquímicos , Grafito/química
3.
Inorg Chem ; 63(9): 4429-4437, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377564

RESUMEN

Designing and fabricating efficient and stable nonprecious metal-based oxygen reduction reaction (ORR) electrocatalysts is a pressing and challenging task for the pursuit of sustainable new energy devices. Herein, porous P-CoSe2@NC electrocatalysts with high-density carbon-coated CoSe2 sites were successfully fabricated based on a pyridyl-porphyrinic metal-organic framework (Co-TPyP MOF) via a molten salt-assisted synthesis method. The hierarchical pore and N-doping carbon substrate of P-CoSe2@NC promotes mass transfer and electron-transfer efficiency, which is beneficial to maximize CoSe2 site utilization. Well-designed P-CoSe2@NC exhibits efficient ORR catalytic activity with a high half-wave potential of 0.863 V and excellent catalytic stability. Meanwhile, rechargeable aqueous primary/quasi-solid-state ZABs based on a P-CoSe2@NC air cathode show a high peak power density and exceptional operating stability, catering to the demands of practical applications. The qualified performance and structure stability of the electrocatalytic system may be mainly attributed to the protection of the CoSe2 nanoparticle by the coated carbon layer. Given the rational design of the structure and the component of the electrocatalyst with enhanced ORR activity, we believe that this work has provided a reliable pathway to the development of high-performance transition-metal chalcogenides for energy-storage and -conversion devices.

4.
J Am Chem Soc ; 146(7): 4380-4392, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38300825

RESUMEN

The hydrofluorination of alkenes represents an attractive strategy for the synthesis of aliphatic fluorides. This approach provides a direct means to form C(sp3)-F bonds selectively from readily available alkenes. Nonetheless, conducting hydrofluorination using nucleophilic fluorine sources poses significant challenges due to the low acidity and high toxicity associated with HF and the poor nucleophilicity of fluoride. In this study, we present a new Co(salen)-catalyzed hydrofluorination of simple alkenes utilizing Et3N·3HF as the sole source of both hydrogen and fluorine. This process operates via a photoredox-mediated polar-radical-polar crossover mechanism. We also demonstrated the versatility of this method by effectively converting a diverse array of simple and activated alkenes with varying degrees of substitution into hydrofluorinated products. Furthermore, we successfully applied this methodology to 18F-hydrofluorination reactions, enabling the introduction of 18F into potential radiopharmaceuticals. Our mechanistic investigations, conducted using rotating disk electrode voltammetry and DFT calculations, unveiled the involvement of both carbocation and CoIV-alkyl species as viable intermediates during the fluorination step, and the contribution of each pathway depends on the structure of the starting alkene.

5.
J Med Chem ; 67(4): 2559-2569, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38305157

RESUMEN

Parkinson's disease (PD) is one of the most highly debilitating neurodegenerative disorders, which affects millions of people worldwide, and leucine-rich repeat kinase 2 (LRRK2) mutations have been involved in the pathogenesis of PD. Developing a potent LRRK2 positron emission tomography (PET) tracer would allow for in vivo visualization of LRRK2 distribution and expression in PD patients. In this work, we present the facile synthesis of two potent and selective LRRK2 radioligands [11C]3 ([11C]PF-06447475) and [18F]4 ([18F]PF-06455943). Both radioligands exhibited favorable brain uptake and specific bindings in rodent autoradiography and PET imaging studies. More importantly, [18F]4 demonstrated significantly higher brain uptake in the transgenic LRRK2-G2019S mutant and lipopolysaccharide (LPS)-injected mouse models. This work may serve as a roadmap for the future design of potent LRRK2 PET tracers.


Asunto(s)
Morfolinas , Nitrilos , Enfermedad de Parkinson , Pirimidinas , Ratones , Animales , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Leucina , Tomografía de Emisión de Positrones/métodos , Enfermedad de Parkinson/metabolismo , Mutación
6.
Chembiochem ; 25(6): e202300813, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38227784

RESUMEN

AMPA glutamate receptors (AMPARs) play a pivotal role in excitatory neurotransmission, particularly in the hippocampus where the TARP γ-8 subunit is enriched and serves as a target for emerging anti-epileptic drugs. To enable in vivo visualization of TARP γ-8 distribution and expression by positron emission tomography (PET), this study focuses on the development of novel 18 F-labeled TARP γ-8 inhibitors and their corresponding precursors, stemming from the azabenzimidazole scaffold. The resulting radioligands [18 F]TARP-2204 and [18 F]TARP-2205 were successfully synthesized with acceptable radiochemical yield, high molar activity, and excellent radiochemical purity. In vitro autoradiography demonstrates high level of specific binding of [18 F]TARP-2205 to TARP γ-8 in both rat and nonhuman primate brain tissues. However, unexpected radiodefluorination in PET imaging studies of rodents emphasizes the need for further structural refinement. This work serves as an excellent starting point for the development of future 18 F-labeled TARP γ-8 PET tracers, offering valuable insights into medicinal chemistry design, radiosynthesis and subsequent PET evaluation.


Asunto(s)
Tomografía de Emisión de Positrones , Receptores AMPA , Ratas , Animales , Receptores AMPA/metabolismo , Tomografía de Emisión de Positrones/métodos , Hipocampo
7.
Hypertension ; 81(1): 193-201, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37901957

RESUMEN

BACKGROUND: Aortic stiffness, assessed as carotid-femoral pulse wave velocity, provides a measure of vascular age and risk for adverse cardiovascular disease outcomes, but it is difficult to measure. The shape of arterial pressure waveforms conveys information regarding aortic stiffness; however, the best methods to extract and interpret waveform features remain controversial. METHODS: We trained a convolutional neural network with fixed-scale (time and amplitude) brachial, radial, and carotid tonometry waveforms as input and negative inverse carotid-femoral pulse wave velocity as label. Models were trained with data from 2 community-based Icelandic samples (N=10 452 participants with 31 126 waveforms) and validated in the community-based Framingham Heart Study (N=7208 participants, 21 624 waveforms). Linear regression rescaled predicted negative inverse carotid-femoral pulse wave velocity to equivalent artificial intelligence vascular age (AI-VA). RESULTS: The AI-VascularAge model predicted negative inverse carotid-femoral pulse wave velocity with R2=0.64 in a randomly reserved Icelandic test group (n=5061, 16%) and R2=0.60 in the Framingham Heart Study. In the Framingham Heart Study (up to 18 years of follow-up; 479 cardiovascular disease, 200 coronary heart disease, and 213 heart failure events), brachial AI-VA was associated with incident cardiovascular disease adjusted for age and sex (model 1; hazard ratio, 1.79 [95% CI, 1.50-2.40] per SD; P<0.0001) or adjusted for age, sex, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, prevalent diabetes, hypertension treatment, and current smoking (model 2; hazard ratio, 1.50 [95% CI, 1.24-1.82] per SD; P<0.0001). Similar hazard ratios were demonstrated for incident coronary heart disease and heart failure events and for AI-VA values estimated from carotid or radial waveforms. CONCLUSIONS: Our results demonstrate that convolutional neural network-derived AI-VA is a powerful indicator of vascular health and cardiovascular disease risk in a broad community-based sample.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Coronaria , Aprendizaje Profundo , Insuficiencia Cardíaca , Rigidez Vascular , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Análisis de la Onda del Pulso/métodos , Inteligencia Artificial , Presión Sanguínea/fisiología , Arterias Carótidas , Rigidez Vascular/fisiología , Colesterol , Factores de Riesgo
9.
Small ; 20(8): e2305607, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817357

RESUMEN

The molecule-electrode coupling plays an essential role in photoresponsive devices with photochromic molecules, and the strong coupling between the molecule and the conventional electrodes leads to/ the quenching effect and limits the reversibility of molecular photoswitches. In this work, we developed a strategy of using transition metal dichalcogenides (TMDCs) electrodes to fabricate the thiol azobenzene (TAB) self-assembled monolayers (SAMs) junctions with the eutectic gallium-indium (EGaIn) technique. The current-voltage characteristics of the EGaIn/GaOx //TAB/TMDCs photoswitches showed an almost 100% reversible photoswitching behavior, which increased by ∼28% compared to EGaIn/GaOx //TAB/AuTS photoswitches. Density functional theory (DFT) calculations showed the coupling strength of the TAB-TMDCs electrode decreased by 42% compared to that of the TAB-AuTS electrode, giving rise to improved reversibility. our work demonstrated the feasibility of 2D TMDCs for fabricating SAMs-based photoswitches with unprecedentedly high reversibility.

10.
BMC Med ; 21(1): 443, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968697

RESUMEN

BACKGROUND: Metabolite signatures of long-term alcohol consumption are lacking. To better understand the molecular basis linking alcohol drinking and cardiovascular disease (CVD), we investigated circulating metabolites associated with long-term alcohol consumption and examined whether these metabolites were associated with incident CVD. METHODS: Cumulative average alcohol consumption (g/day) was derived from the total consumption of beer, wine, and liquor on average of 19 years in 2428 Framingham Heart Study Offspring participants (mean age 56 years, 52% women). We used linear mixed models to investigate the associations of alcohol consumption with 211 log-transformed plasma metabolites, adjusting for age, sex, batch, smoking, diet, physical activity, BMI, and familial relationship. Cox models were used to test the association of alcohol-related metabolite scores with fatal and nonfatal incident CVD (myocardial infarction, coronary heart disease, stroke, and heart failure). RESULTS: We identified 60 metabolites associated with cumulative average alcohol consumption (p < 0.05/211 ≈ 0.00024). For example, 1 g/day increase of alcohol consumption was associated with higher levels of cholesteryl esters (e.g., CE 16:1, beta = 0.023 ± 0.002, p = 6.3e - 45) and phosphatidylcholine (e.g., PC 32:1, beta = 0.021 ± 0.002, p = 3.1e - 38). Survival analysis identified that 10 alcohol-associated metabolites were also associated with a differential CVD risk after adjusting for age, sex, and batch. Further, we built two alcohol consumption weighted metabolite scores using these 10 metabolites and showed that, with adjustment age, sex, batch, and common CVD risk factors, the two scores had comparable but opposite associations with incident CVD, hazard ratio 1.11 (95% CI = [1.02, 1.21], p = 0.02) vs 0.88 (95% CI = [0.78, 0.98], p = 0.02). CONCLUSIONS: We identified 60 long-term alcohol consumption-associated metabolites. The association analysis with incident CVD suggests a complex metabolic basis between alcohol consumption and CVD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Coronaria , Humanos , Femenino , Persona de Mediana Edad , Masculino , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estudios Prospectivos , Consumo de Bebidas Alcohólicas/epidemiología , Consumo de Bebidas Alcohólicas/efectos adversos , Enfermedad Coronaria/complicaciones , Dieta , Factores de Riesgo
11.
J Med Chem ; 66(23): 16018-16031, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37979148

RESUMEN

GluN2B subunit-containing N-methyl-d-aspartate (NMDA) receptors have been implicated in various neurological disorders. Nonetheless, a validated fluorine-18 labeled positron emission tomography (PET) ligand for GluN2B imaging in the living human brain is currently lacking. The aim of this study was to develop a novel synthetic approach that allows an enantiomerically pure radiosynthesis of the previously reported PET radioligands (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 as well as to assess their in vitro and in vivo performance characteristics for imaging the GluN2B subunit-containing NMDA receptor in rodents. A novel synthetic approach was successfully developed, which allows for the enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 and the translation of the probe to the clinic. While both enantiomers were selective over sigma2 receptors in vitro and in vivo, (R)-[18F]OF-NB1 showed superior GluN2B subunit specificity by in vitro autoradiography and higher volumes of distribution in the rodent brain by small animal PET studies.


Asunto(s)
Tomografía de Emisión de Positrones , Receptores de N-Metil-D-Aspartato , Animales , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Flúor
12.
Biomed Pharmacother ; 168: 115842, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925936

RESUMEN

As a subclass of ionotropic glutamate receptors (iGluRs), α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors have been implicated in various neurological disorders and neurodegenerative diseases. To further our understanding of AMPA receptor-related disorders in the central nervous system (CNS), it is important to be able to image and quantify AMPA receptors in vivo. In this study, we identified a novel F-containing AMPA positive allosteric modulator (PAM) 6 as a potential lead compound. Molecular docking studies and CNS PET multi-parameter optimization (MPO) analysis were used to predict the absorption, distribution, metabolism, and excretion (ADME) characteristics of 6 as a PET probe. The resulting PET probe, [18F]6 (codename [18F]AMPA-2109), was successfully radiolabeled and demonstrated excellent blood-brain barrier (BBB) permeability and high brain uptake in rodents and non-human primates. However, [18F]6 did not show substantial specific binding in the rodent or non-human primate brain. Further medicinal chemistry efforts are necessary to improve specific binding, and our work may serve as a starting point for the design of novel 18F-labeled AMPA receptor-targeted PET radioligands aimed for clinical translation.


Asunto(s)
Receptores AMPA , Tiadiazinas , Animales , Receptores AMPA/metabolismo , Tiadiazinas/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Simulación del Acoplamiento Molecular , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Roedores/metabolismo
13.
ACS Chem Neurosci ; 14(20): 3752-3760, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37788055

RESUMEN

The cannabinoid type 2 receptor (CB2) has been implicated in a variety of central and peripheral inflammatory diseases, prompting significant interest in the development of CB2-targeted diagnostic and therapeutic agents. A validated positron emission tomography (PET) radioligand for imaging CB2 in the living human brain as well as in peripheral tissues is currently lacking. As part of our research program, we have recently identified the trisubstituted pyridine, [18F]RoSMA-18-d6, which proved to be highly suitable for in vitro and in vivo mapping of CB2 in rodents. The aim of this study was to assess the performance characteristics of [18F]RoSMA-18-d6 in nonhuman primates (NHPs) to pave the way for clinical translation. [18F]RoSMA-18-d6 was synthesized from the respective tosylate precursor according to previously reported procedures. In vitro autoradiograms with NHP spleen tissue sections revealed a high binding of [18F]RoSMA-18-d6 to the CB2-rich NHP spleen, which was significantly blocked by coincubation with the commercially available CB2 ligand, GW405833 (10 µM). In contrast, no specific binding was observed by in vitro autoradiography with NHP brain sections, which was in agreement with the notion of a CB2-deficient healthy mammalian brain. In vitro findings were corroborated by PET imaging experiments in NHPs, where [18F]RoSMA-18-d6 uptake in the spleen was dose-dependently attenuated with 1 and 5 mg/kg GW405833, while no specific brain signal was observed. Remarkably, we observed tracer uptake and retention in the NHP spinal cord, which was reduced by GW405833 blockade, pointing toward a potential utility of [18F]RoSMA-18-d6 in probing CB2-expressing cells in the bone marrow. If these observations are substantiated in NHP models of enhanced leukocyte proliferation in the bone marrow, [18F]RoSMA-18-d6 may serve as a valuable marker for hematopoietic activity in various pathologies. In conclusion, [18F]RoSMA-18-d6 proved to be a suitable PET radioligand for imaging CB2 in NHPs, supporting its translation to humans.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Animales , Humanos , Radiofármacos/metabolismo , Tomografía de Emisión de Positrones/métodos , Ligandos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Primates/metabolismo , Receptor Cannabinoide CB2/metabolismo , Radioisótopos de Flúor/metabolismo , Mamíferos/metabolismo
14.
ACS Med Chem Lett ; 14(10): 1419-1426, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37849554

RESUMEN

Orexin 2 receptors (OX2R) represent a vital subtype of orexin receptors intricately involved in the regulation of wakefulness, arousal, and sleep-wake cycles. Despite their importance, there are currently no positron emission tomography (PET) tracers available for imaging the OX2R in vivo. Herein, we report [11C]1 ([11C]OX2-2201) and [11C]2 ([11C]OX2-2202) as novel PET ligands. Both compounds 1 (Ki = 3.6 nM) and 2 (Ki = 2.2 nM) have excellent binding affinity activities toward OX2R and target selectivity (OX2/OX1 > 600 folds). In vitro autoradiography in the rat brain suggested good to excellent in vitro binding specificity for [11C]1 and [11C]2. PET imaging in rat brains indicated that the low brain uptake of [11C]2 may be due to P-glycoprotein and/or breast cancer resistance protein efflux interaction and/or low passive permeability. Continuous effort in medicinal chemistry optimization is necessary to improve the brain permeability of this scaffold.

15.
ACS Catal ; 13(4): 2761-2770, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37800120

RESUMEN

Despite the success of Sonogashira coupling for the synthesis of arylalkynes and conjugated enynes, the engagement of unactivated alkyl halides in such reactions remains historically challenging. We report herein a strategy that merges Cu-catalyzed alkyne transfer with the aryl radical activation of carbon-halide bonds to enable a general approach for the coupling of alkyl iodides with terminal alkynes. This unprecedented Sonogashira-type cross-coupling reaction tolerates a broad range of functional groups and has been applied to the late-stage cross-coupling of densely functionalized pharmaceutical agents as well as the synthesis of positron emission tomography tracers.

16.
J Colloid Interface Sci ; 652(Pt B): 1803-1811, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683408

RESUMEN

Regulating the electrocatalytic hydrogen evolution reaction (HER) performance through defect engineering of the surface of the catalysts is an effective pathway. Herein, cobalt-molybdenum phosphide (CoMoP) nanosheets wrapped molybdenum oxide (MoO3) core-shell nanorods (MoO3@CoMoP), as alkaline electrocatalysts with ligand-derived N-doped carbon hybrid and oxygen-vacancies, were synthesized via solvothermal approaches and followed by phosphorization. As expected, the MoO3@MoCoP affords efficient HER with a low overpotential (η) of 84.2 ± 0.4 mV at 10 mA cm-2. After phosphorization, not only the MoCoP active species are incorporated into the catalyst, but also the defects sites are achieved. Impressively, the metal-ligand-derived MoCoP are distributed uniformly in the N-doped carbon hybrid matrix, exhibiting well-exposed active sites. Benefiting from the synergy effect of MoCoP active species and oxygen-vacancy, the MoO3@MoCoP showed increased conductivity and stability, which can deliver a current density of 10 mA cm-2 over 40 h. MoO3@MoCoP exhibits an optimal electronic structure on the surface by charge redistribution at the interface, thereby optimizing the hydrogen adsorption energy and accelerating the hydrogen evolution kinetics. This work paves the way for the design of transition metal electrocatalysts with desirable properties through a promising strategy in the field of energy conversion.

17.
Accid Anal Prev ; 192: 107289, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696063

RESUMEN

Driver workload (DWL) is an important factor that needs to be considered in the study of traffic safety. The research focus on DWL has undergone certain shifts with the rapid development of scientific and technological advancements in the field of transportation in recent years. This study aims to grasp the state of research on DWL by both bibliometric analysis and individual critical literature review. The knowledge structure and development trend are described using bibliometric analysis. The knowledge mapping method is applied to mine the available literature in depth. It is discovered that one of the current research focus on DWL has shifted towards investigating its application in the field of autonomous driving. Subjective questionnaires and experimental tests (including both simulation technology and field study) are the main approaches to analyze DWL. An individual critical literature review of the influencing factors, measurement, and performance of DWL is provided. Research findings have shown that DWL was highly impacted by both intrinsic (e.g., age, temperament, driving experience) and external factors (e.g., vehicles, roads, tasks, environments). Scholars are actively exploring the combined effects of various factors and the level of vehicle automation on DWL. In addition to assess DWL by using subjective measures or physiological parameter measures separately, studies have started to improve classification accuracy by combining multiple measurement methods. Safety thresholds of DWL are not sufficiently studied due to the various interference items corresponding to different scenarios, but it is expected to quantify the DWL and find the threshold by establishing assessment models considering these intrinsic and external multiple-factors simultaneously. Driver or vehicle performance indicators are controversial to measure DWL directly, but they were suitable to reflect the impact of DWL in different driving conditions.


Asunto(s)
Accidentes de Tránsito , Carga de Trabajo , Humanos , Accidentes de Tránsito/prevención & control , Automatización , Bibliometría , Simulación por Computador
18.
Platelets ; 34(1): 2238835, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37609998

RESUMEN

Arterial tonometry and vascular calcification measures are useful in cardiovascular disease (CVD) risk assessment. Prior studies found associations between tonometry measures, arterial calcium, and CVD risk. Activated platelets release angiopoietin-1 and other factors, which may connect vascular structure and platelet function. We analyzed arterial tonometry, platelet function, aortic, thoracic and coronary calcium, and thoracic and abdominal aorta diameters measured in the Framingham Heart Study Gen3/NOS/OMNI-2 cohorts (n = 3,429, 53.7% women, mean age 54.4 years ±9.3). Platelet reactivity in whole blood or platelet-rich plasma was assessed using 5 assays and 7 agonists. We analyzed linear mixed effects models with platelet reactivity phenotypes as outcomes, adjusting for CVD risk factors and family structure. Higher arterial calcium trended with higher platelet reactivity, whereas larger aortic diameters trended with lower platelet reactivity. Characteristic impedance (Zc) and central pulse pressure positively trended with various platelet traits, while pulse wave velocity and Zc negatively trended with collagen, ADP, and epinephrine traits. All results did not pass a stringent multiple test correction threshold (p < 2.22e-04). The diameter trends were consistent with lower shear environments invoking less platelet reactivity. The vessel calcium trends were consistent with subclinical atherosclerosis and platelet activation being inter-related.


What is the context? Prior research has reported that measures of vascular system-influencing proteins such as angiopoietin-2, arterial calcium plaque formation, and arterial stiffness assessed by tonometry are associated with CVD risk.Since activated platelets produce and release vascular proteins like angiopoietin when activated, and microparticles that interact with endothelium, release of the foregoing mediators could provide one way in which vascular structure and platelet function influence each other.To our knowledge, no prior studies have directly investigated associations between these measures in a large sample. This investigation relates platelet function to arterial tonometry, aortic and arterial diameter, and arterial calcium measures in the Framingham Heart Study (FHS) Gen3/NOS/OMNI-2 cohorts (n = 3,429).What's new? Generally, higher arterial calcium measures trended with higher platelet reactivity, whereas larger aortic diameters trended with lower platelet reactivity.Arterial tonometry measures had positive and negative trends with platelet functions, including platelet measures with opposite relations to negative-inverse carotid-femoral pulse wave velocity (niCFPWV) and characteristic impedance (Zc). All tonometry, calcium, and diameter results did not reach a more stringent multiple testing threshold (p < 2.22e-04).What's the impact? The aortic diameter trends are consistent with lower shear stress invoking less platelet reactivity.The vessel calcium trends are consistent with increased vascular calcium buildup that could provoke platelet activation, thereby contributing to increased blood clot risk. Conversely, increased platelet activation could contribute to increased inflammation and thrombosis, leading to calcification in the arterial wall.


Asunto(s)
Aterosclerosis , Calcio , Femenino , Masculino , Humanos , Análisis de la Onda del Pulso , Presión Sanguínea , Activación Plaquetaria
19.
Biomed Pharmacother ; 165: 115222, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549459

RESUMEN

Lung cancer (LC) incidence and mortality continue to increase annually worldwide. LC is insidious and readily metastasizes and relapses. Except for its early diagnosis and surgical resection, there is no effective cure for advanced metastatic LC, and the prognosis remains dismal. Exosomes, a class of nano-sized extracellular vesicles produced by healthy or diseased cells, are coated with a bilayer lipid membrane and contain various functional molecules such as proteins, lipids, and nucleic acids. They can be used for intracellular or intercellular signaling or the transportation of biological substances. A growing body of evidence supports that exosomes play multiple crucial roles in the occurrence and metastatic progression of many malignancies, including LC. The elucidation of the potential roles of exosomes in the initiation, invasion, and metastasis of LC and their underlying molecular mechanisms may contribute to improved early diagnosis and treatment.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Exosomas/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores de Tumor/metabolismo
20.
J Med Chem ; 66(16): 10889-10916, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37583063

RESUMEN

Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.


Asunto(s)
Radiofármacos , Receptores Colinérgicos , Radiofármacos/química , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Sistema Nervioso Central
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...