Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Stress ; 30: 100632, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38601361

RESUMEN

The involvement of lipids in the mechanism of depression has triggered extensive discussions. Earlier studies have identified diminished levels of lysophosphatidic acid (LPA) and autotaxin (ATX) in individuals experiencing depression. However, the exact significance of this phenomenon in relation to depression remains inconclusive. This study seeks to explore the deeper implications of these observations. We assessed alterations in ATX and LPA in both the control group and the chronic unpredictable mild stress (CUMS) model group. Additionally, the impact of ATX adeno-associated virus (AAV-ATX) injection into the hippocampus was validated through behavioral tests in CUMS-exposed mice. Furthermore, we probed the effects of LPA on synapse-associated proteins both in HT22 cells and within the mouse hippocampus. The mechanisms underpinning the LPA-triggered shifts in protein expression were further scrutinized. Hippocampal tissues were augmented with ATX to assess its potential to alleviate depression-like behavior by modulating synaptic-related proteins. Our findings suggest that the decrement in ATX and LPA levels alters the expression of proteins associated with synaptic plasticity in vitro and in vivo, such as synapsin-I (SYN), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Moreover, we discerned a role for the ERK/CREB signaling pathway in mediating the effects of ATX and LPA. Importantly, strategic supplementation of ATX effectively mitigated depression-like behaviors. This study indicates that the ATX-LPA pathway may influence depression-like behaviors by modulating synaptic plasticity in the brains of CUMS-exposed mice. These insights augment our understanding of depression's potential pathogenic mechanism in the context of lipid metabolism and propose promising therapeutic strategies for ameliorating the disease.

2.
Neurobiol Stress ; 30: 100624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38524250

RESUMEN

Gestational stress can exacerbate postpartum depression (PPD), for which treatment options remain limited. Environmental enrichment (EE) may be a therapeutic intervention for neuropsychiatric disorders, including depression, but the specific mechanisms by which EE might impact PPD remain unknown. Here we examined the behavioral, molecular, and cellular impact of EE in a stable PPD model in rats developed through maternal separation (MS). Maternal rats subjected to MS developed depression-like behavior and cognitive dysfunction together with evidence of significant neuroinflammation including microglia activation, neuronal apoptosis, and impaired synaptic plasticity. Expanding the duration of EE to throughout pregnancy and lactation, we observed an EE-associated reversal of MS-induced depressive phenotypes, inhibition of neuroinflammation and neuronal apoptosis, and improvement in synaptic plasticity in maternal rats. Thus, EE effectively alleviates neuroinflammation, neuronal apoptosis, damage to synaptic plasticity, and consequent depression-like behavior in mother rats experiencing MS-induced PPD, paving the way for new preventive and therapeutic strategies for PPD.

3.
Neuroscience ; 542: 1-10, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38342336

RESUMEN

Many central nervous system diseases are closely related to nerve damage caused by dysregulation of the endogenous neurotransmitter glutamate. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) play an important role in improving injury and regeneration functions. However, its mechanism remains unknown. Therefore, the aim of this study is to investigate whether and how BMSC-Exos improve neurotoxicity caused by glutamate and to fill the gap in the literature. In this study, glutamate-treated HT22 cells were first exposed to mouse-derived BMSC-Exos at different concentrations to observe their effects on HT22 apoptosis. Next, we treated glutamate-treated HT22 cells with mouse-derived BMSC-Exos. We then inhibited the PI3K/Akt/mTOR signaling pathways using the PI3K/Akt inhibitor and the mTOR inhibitor, respectively, and observed the protective effect of mouse-derived BMSC-Exos on HT22 cells treated with glutamate. Our results show that BMSC-Exos reduced apoptosis triggered by glutamate stimulation, increased cell vitality, and decreased the levels of proapoptotic proteins while increasing the levels of anti-apoptotic proteins. The protective effect of BMSC-Exos was weakened when PI3K/Akt inhibitor and mTOR inhibitor were added. To sum up, we draw the following conclusions: BMSC-Exos can reduce neuronal apoptosis and apoptosis-related protein expression after glutamate stimulation by regulating the PI3K/Akt/mTOR signaling pathway.


Asunto(s)
Exosomas , MicroARNs , Fármacos Neuroprotectores , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ácido Glutámico/toxicidad , Ácido Glutámico/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Exosomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , MicroARNs/metabolismo
4.
Front Aging Neurosci ; 15: 1142163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032832

RESUMEN

Introduction: Ischemic stroke (IS) is a type of stroke that leads to high mortality and disability. Anoikis is a form of programmed cell death. When cells detach from the correct extracellular matrix, anoikis disrupts integrin junctions, thus preventing abnormal proliferating cells from growing or attaching to an inappropriate matrix. Although there is growing evidence that anoikis regulates the immune response, which makes a great contribution to the development of IS, the role of anoikis in the pathogenesis of IS is rarely explored. Methods: First, we downloaded GSE58294 set and GSE16561 set from the NCBI GEO database. And 35 anoikis-related genes (ARGs) were obtained from GSEA website. The CIBERSORT algorithm was used to estimate the relative proportions of 22 infiltrating immune cell types. Next, consensus clustering method was used to classify ischemic stroke samples. In addition, we used least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF) algorithms to screen the key ARGs in ischemic stroke. Next, we performed receiver operating characteristics (ROC) analysis to assess the accuracy of each diagnostic gene. At the same time, the nomogram was constructed to diagnose IS by integrating trait genes. Then, we analyzed the correlation between gene expression and immune cell infiltration of the diagnostic genes in the combined database. And gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on these genes to explore differential signaling pathways and potential functions, as well as the construction and visualization of regulatory networks using NetworkAnalyst and Cytoscape. Finally, we investigated the expression pattern of ARGs in IS patients across age or gender. Results: Our study comprehensively analyzed the role of ARGs in IS for the first time. We revealed the expression profile of ARGs in IS and the correlation with infiltrating immune cells. And The results of consensus clustering analysis suggested that we can classify IS patients into two clusters. The machine learning analysis screened five signature genes, including AKT1, BRMS1, PTRH2, TFDP1 and TLE1. We also constructed nomogram models based on the five risk genes and evaluated the immune infiltration correlation, gene-miRNA, gene-TF and drug-gene interaction regulatory networks of these signature genes. The expression of ARGs did not differ by sex or age. Discussion: This study may provide a beneficial reference for further elucidating the pathogenesis of IS, and render new ideas for drug screening, individualized therapy and immunotherapy of IS.

5.
Behav Brain Res ; 445: 114382, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36871905

RESUMEN

Depression incurs a huge personal and societal burden, impairing cognitive and social functioning and affecting millions of people worldwide. A better understanding of the biological basis of depression could facilitate the development of new and improved therapies. Rodent models have limitations and do not fully recapitulate human disease, hampering clinical translation. Primate models of depression help to bridge this translational gap and facilitate research into the pathophysiology of depression. Here we optimized a protocol for administering unpredictable chronic mild stress (UCMS) to non-human primates and evaluated the influence of UCMS on cognition using the classical Wisconsin General Test Apparatus (WGTA) method. We used resting-state functional MRI to explore changes in amplitude of low-frequency fluctuations and regional homogeneity in rhesus monkeys. Our work highlights that the UCMS paradigm effectively induces behavioral and neurophysiological (functional MRI) changes in monkeys but without significantly impacting cognition. The UCMS protocol requires further optimization in non-human primates to authentically simulate changes in cognition associated with depression.


Asunto(s)
Encéfalo , Depresión , Animales , Humanos , Depresión/tratamiento farmacológico , Macaca mulatta , Encéfalo/diagnóstico por imagen , Cognición , Neuroimagen , Estrés Psicológico/complicaciones , Modelos Animales de Enfermedad
6.
J Agric Food Chem ; 67(28): 7977-7985, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30932489

RESUMEN

2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), one of the most abundant heterocyclic aromatic amines (HAAs) found in the human diet, is primarily produced during high-temperature meat or fish cooking. While MeIQx has been investigated as a potential carcinogen, the cytotoxicity and related molecular mechanisms remain unclear. Here, we demonstrate that autophagosome maturation is blocked by MeIQx. Mechanistically, MeIQx inhibits acidification of lysosomes rather than prevents autophagosome-lysosome fusion. Moreover, cellular lipid profiles are altered by MeIQx treatment. Notably, many phospholipids and sphingolipids are significantly upregulated after exposure to MeIQx. Furthermore, MeIQx decreases expression of pluripotency-associated proteins in mouse embryonic stem cells (ESCs). Together, MeIQx blocks autophagosome maturation through inhibiting acidification of lysosomes, alters lipid metabolism, and decreases expression of pluripotent factors. Our studies provide more cytotoxic evidence and elucidate related mechanisms on the risk of HAA exposure and are expected to promote supervision of food safety and human health.


Asunto(s)
Autofagosomas/efectos de los fármacos , Lípidos/química , Quinoxalinas/farmacología , Factores de Transcripción/metabolismo , Animales , Autofagosomas/metabolismo , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...